75 research outputs found

    Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering

    Get PDF
    5-Hydroxymethylfurfural (HMF) can be transformed to a range of industrially useful derivatives, such as 2,5-diformylfuran (DFF), but the reactions needed for efficient industrial production are hindered by several issues. Here, the authors perform reaction and enzyme engineering resulting in a galactose oxidase variant with high activity towards HMF, improved oxygen binding and high productivity

    Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-12-09, accepted 2021-07-06, registration 2021-07-21, pub-electronic 2021-08-16, online 2021-08-16, collection 2021-12Publication status: PublishedFunder: EC | EC Seventh Framework Programm | FP7 Food, Agriculture and Fisheries, Biotechnology (FP7-KBBE - Specific Programme "Cooperation": Food, Agriculture and Fisheries, Biotechnology); doi: https://doi.org/10.13039/100011262; Grant(s): 613849Abstract: 5-Hydroxymethylfurfural (HMF) has emerged as a crucial bio-based chemical building block in the drive towards developing materials from renewable resources, due to its direct preparation from sugars and its readily diversifiable scaffold. A key obstacle in transitioning to bio-based plastic production lies in meeting the necessary industrial production efficiency, particularly in the cost-effective conversion of HMF to valuable intermediates. Toward addressing the challenge of developing scalable technology for oxidizing crude HMF to more valuable chemicals, here we report coordinated reaction and enzyme engineering to provide a galactose oxidase (GOase) variant with remarkably high activity toward HMF, improved O2 binding and excellent productivity (>1,000,000 TTN). The biocatalyst and reaction conditions presented here for GOase catalysed selective oxidation of HMF to 2,5-diformylfuran offers a productive blueprint for further development, giving hope for the creation of a biocatalytic route to scalable production of furan-based chemical building blocks from sustainable feedstocks

    DIDS: rapidly prototyping configuration design systems

    Full text link
    The domain independent design system (DIDS) provides a set of tools for rapidly constructing new configuration design systems from a library of reusable software elements called mechanisms . A DIDS user begins by creating a model of the problem domain and the task to be automated. This includes describing a library of parts from which new artifacts could be configured, optimization and preference criteria, and functionality constraints. DIDS analyzes this input and automatically builds an operational prototype system by selecting and combining mechanisms. DIDS' ability to automate this process is derived from its model of configuration design, which enables reusable mechanisms to be identified and automatically selected based on a problem's characteristics. The use of DIDS is illustrated by showing how DIDS solved an elevator-configuration problem.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46597/1/10845_2004_Article_BF00124685.pd

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Cuidados biomédicos de saúde em Angola e na Companhia de Diamantes de Angola, c. 1910-1970

    Get PDF
    Pretende-se caracterizar a prestação de cuidados biomédicos em Angola durante a atividade da Companhia de Diamantes de Angola. Uma análise comparativa de políticas e práticas de saúde pública de vários atores coloniais, como os serviços de saúde da Companhia, sua congénere do Estado e outras empresas coloniais, revelará diferenças de investimento na saúde, isto é, instalações e pessoal de saúde, e tratamentos. Este escrutínio bem como as condições de vida iluminarão o carácter idiossincrático e central dos serviços de saúde da Companhia em termos de morbimortalidade em Angola, e a centralidade destes para as representações de um império cuidador

    A Single Enzyme Oxidative “Cascade” via a Dual-Functional Galactose Oxidase

    No full text
    The galactose oxidase (GOase) M<sub>3‑5</sub> variant, previously engineered for enantioselective oxidation of (<i>R</i>)-secondary alcohols, is now shown to catalyze the sequential four-electron oxidation of substituted benzylic and heteroaromatic benzylic alcohols to the corresponding carboxylic acids via the intermediate aldehyde. Aldehyde oxidation has been shown to occur on the hydrated (<i>gem</i>-diol) form of the aldehyde, and hence the activity of this second oxidation step is primarily determined by the effects of substituents on the aromatic ring. The demonstration of GOase for “through oxidation” of alcohols to carboxylic acids represents a fusion of the activities of two distinct copper radical oxidases (galactose oxidase and glyoxal oxidase) into a single enzyme sequence with potential applications as an abbreviated oxidative cascade
    corecore