46 research outputs found

    Constraining dark energy with Sunyaev-Zel'dovich cluster surveys

    Get PDF
    We discuss the prospects of constraining the properties of a dark energy component, with particular reference to a time varying equation of state, using future cluster surveys selected by their Sunyaev-Zel'dovich effect. We compute the number of clusters expected for a given set of cosmological parameters and propogate the errors expected from a variety of surveys. In the short term they will constrain dark energy in conjunction with future observations of type Ia supernovae, but may in time do so in their own right.Comment: 5 pages, 3 figures, 1 table, version accepted for publication in PR

    Detailed SZ study of 19 LoCuSS galaxy clusters: masses and temperatures out to the virial radius

    Get PDF
    We present 16-GHz AMI SZ observations of 19 clusters with L_X >7x10^37 W (h50=1) selected from the LoCuS survey (0.142<z<0.295) and of A1758b, in the FoV of A1758a. We detect 17 clusters with 5-23sigma peak surface brightnesses. Cluster parameters are obtained using a Bayesian cluster analysis. We fit isothermal beta-models to our data and assume the clusters are virialized (with all the kinetic energy in gas internal energy). Our gas temperature, T_AMI, is derived from AMI SZ data, not from X-ray spectroscopy. Cluster parameters internal to r500 are derived assuming HSE. We find: (i) Different gNFW parameterizations yield significantly different parameter degeneracies. (ii) For h70 = 1, we find the virial radius r200 to be typically 1.6+/-0.1 Mpc and the total mass M_T(r200) typically to be 2.0-2.5xM_T(r500).(iii) Where we have found M_T X-ray (X) and weak-lensing (WL) values in the literature, there is good agreement between WL and AMI estimates (with M_{T,AMI}/M_{T,WL} =1.2^{+0.2}_{-0.3} and =1.0+/-0.1 for r500 and r200, respectively). In comparison, most Suzaku/Chandra estimates are higher than for AMI (with M_{T,X}/M_{T,AMI}=1.7+/-0.2 within r500), particularly for the stronger mergers.(iv) Comparison of T_AMI to T_X sheds light on high X-ray masses: even at large r, T_X can substantially exceed T_AMI in mergers. The use of these higher T_X values will give higher X-ray masses. We stress that large-r T_SZ and T_X data are scarce and must be increased. (v) Despite the paucity of data, there is an indication of a relation between merger activity and SZ ellipticity. (vi) At small radius (but away from any cooling flow) the SZ signal (and T_AMI) is less sensitive to ICM disturbance than the X-ray signal (and T_X) and, even at high r, mergers affect n^2-weighted X-ray data more than n-weighted SZ, implying significant shocking or clumping or both occur even in the outer parts of mergers.Comment: 45 pages, 33 figures, 13 tables Accepted for publication in MNRA

    Sunyaev-Zel'dovich clusters in millennium gas simulations

    Get PDF
    Large surveys using the Sunyaev–Zel’dovich (SZ) effect to find clusters of galaxies are now starting to yield large numbers of systems out to high redshift, many of which are new dis- coveries. In order to provide theoretical interpretation for the release of the full SZ cluster samples over the next few years, we have exploited the large-volume Millennium gas cosmo- logical N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samplesthattheintrinsic(spherical)Y500–M500relationhasverylittlescatter(σlog10Y ≃0.04), is insensitive to cluster gas physics and evolves to redshift 1 in accordance with self-similar expectations. Our preheating and feedback models predict scaling relations that are in excel- lent agreement with the recent analysis from combined Planck and XMM–Newton data by the Planck Collaboration. This agreement is largely preserved when r500 and M500 are derived using thehydrostaticmassproxy,YX,500,albeitwithsignificantlyreducedscatter(σlog10Y ≃0.02),a result that is due to the tight correlation between Y500 and YX,500. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line of sight, by extracting cluster Y500 values from 50 simulated 5 × 5-deg2 sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y500–M500 relation increases in the preheating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r500 in all cases. The profiles themselves are well described by generalized Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter. In conclusion, our results support the notion that Y500 is a robust mass proxy for use in cosmological analyses with clusters

    Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager

    Get PDF
    We present observations using the Small Array of the Arcminute Microkelvin Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning 0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of these without any attempt at source subtraction, although strong source contamination is present. With radio-source measurements from high-resolution observations, and under the assumptions of spherical β\beta-model, isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in the visibility plane detects extended SZ decrements in all seven clusters over and above receiver noise, radio sources and primary CMB imprints. Bayesian evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and 3000:1 for one with substantially less data than the others. We present posterior probability distributions for, e.g., total mass and gas fraction averaged over radii internal to which the mean overdensity is 1000, 500 and 200, r_200 being the virial radius. Reaching r_200 involves some extrapolation for the nearer clusters but not for the more-distant ones. We find that our estimates of gas fraction are low (compared with most in the literature) and decrease with increasing radius. These results appear to be consistent with the notion that gas temperature in fact falls with distance (away from near the cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed Figure 1

    Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes

    Get PDF
    An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine

    Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells

    Get PDF
    Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) alpha-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH2OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8 alpha(+)CD8 beta(-/lo), implying predominant expression of CD8 alpha alpha homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH2OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in V. 19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-beta repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population

    An X-ray Spectral Survey of Radio-Loud AGN With ASCA

    Get PDF
    We present a uniform and systematic analysis of the 0.6-10 keV X-ray spectra of radio-loud active galactic nuclei (AGN) observed by ASCA. The sample 10 BLRGs, 5 QSRs, 9 NLRGs, and 10 RGs. At soft X-rays, about half of the NLRGs and all of the RGs exhibit a thermal plasma component, with a bimodal distribution of temperatures and luminosities, suggesting an origin either in a surrounding cluster or loose group or in a hot corona. At energies above 2 keV, a hard power-law component is detected in 90% of cases. The power-law photon indices and luminosities in BLRGs, QSRs, and NLRGs are similar, consistent with orientation-based unification schemes. Significant excess cold absorption is detected in most NLRGs, but also in some BLRGS and QSRs, which was somewhat unexpected. In contrast to Seyfert galaxies, only one object showss the signature of a warm absorber. The nuclear X-ray luminosity is correlated with the luminosity of the [O III] emission line, the FIR emission at 12 microns, and the lobe radio power at 5 GHz. The Fe K line is detected in 50% of BLRGs, one QSR, and a handful of NLRGs. This sample also includes 6 Weak Line Radio Galaxies (WLRGs). Their spectra WLRGs can be generally decomposed into a soft thermal component with hard absrorbed power-law component, which is significantly flatter than any other radio-loud AGNs. Their intrinsic luminosities are two orders of magnitude lower than in other sources of the sample. An interesting possibility is that WLRGs represent an extreme population of radio galaxies in which the central black hole is accreting at a rate well below the Eddington rate.Comment: To appear in the Astrophysical Journal. 72 pages, including many tables and figures. Fig 1 is separate, in TIFF format. Postscript version of fig 1 and postscript version of entire preprint can be obtained from http://www.astro.psu.edu/users/mce/preprint_index.htm

    Parameterization Effects in the analysis of AMI Sunyaev-Zel'dovich Observations

    Get PDF
    Most Sunyaev--Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the cluster total mass and/or gas mass using parameterised models and assumptions of spherical symmetry and hydrostatic equilibrium. By numerically exploring the probability distributions of the cluster parameters given the simulated interferometric SZ data in the context of Bayesian methods, and assuming a beta-model for the electron number density we investigate the capability of this model and analysis to return the simulated cluster input quantities via three rameterisations. In parameterisation I we assume that the T is an input parameter. We find that parameterisation I can hardly constrain the cluster parameters. We then investigate parameterisations II and III in which fg(r200) replaces temperature as a main variable. In parameterisation II we relate M_T(r200) and T assuming hydrostatic equilibrium. We find that parameterisation II can constrain the cluster physical parameters but the temperature estimate is biased low. In parameterisation III, the virial theorem replaces the hydrostatic equilibrium assumption. We find that parameterisation III results in unbiased estimates of the cluster properties. We generate a second simulated cluster using a generalised NFW (GNFW) pressure profile and analyse it with an entropy based model to take into account the temperature gradient in our analysis and improve the cluster gas density distribution. This model also constrains the cluster physical parameters and the results show a radial decline in the gas temperature as expected. The mean cluster total mass estimates are also within 1 sigma from the simulated cluster true values. However, we find that for at least interferometric SZ analysis in practice at the present time, there is no differences in the AMI visibilities between the two models. This may of course change as the instruments improve.Comment: 19 pages, 13 tables, 24 figure

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap
    corecore