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ABSTRACT
Most Sunyaev–Zel’dovich (SZ) and X-ray analyses of galaxy clusters try to constrain the clus-
ter total mass (MT(r)) and/or gas mass (Mg(r)) using parametrized models derived from both
simulations and imaging observations, and assumptions of spherical symmetry and hydrostatic
equilibrium. By numerically exploring the probability distributions of the cluster parameters
given the simulated interferometric SZ data in the context of Bayesian methods, and assuming
a β-model for the electron number density ne(r) described by two shape parameters β and rc,
we investigate the capability of this model and analysis to return the simulated cluster input
quantities via three parametrizations. In parametrization I we assume that the gas temperature
is an independent free parameter and assume hydrostatic equilibrium, spherical geometry and
an ideal gas equation of state. We find that parametrization I can hardly constrain the cluster
parameters and fails to recover the true values of the simulated cluster. In particular it overes-
timates MT(r200) and Tg(r200) (MT(r200) = (6.43 ± 5.43) × 1015 M� and Tg(r200) = (10.61 ±
5.28) keV) compared to the corresponding values of the simulated cluster (MT(r200) = 5.83 ×
1014 M� and Tg(r200) = 5 keV). We then investigate parametrizations II and III in which
f g(r200) replaces temperature as a main variable; we do this because f g may vary significantly
less from cluster to cluster than temperature. In parametrization II we relate MT(r200) and Tg

assuming hydrostatic equilibrium. We find that parametrization II can constrain the cluster
physical parameters but the temperature estimate is biased low (MT(r200) = (6.8 ± 2.1) ×
1014 M� and Tg(r200) = (3.0 ± 1.2) keV). In parametrization III, the virial theorem (plus the
assumption that all the kinetic energy of the cluster is the internal energy of the gas) replaces
the hydrostatic equilibrium assumption because we consider it more robust both in theory
and in practice. We find that parametrization III results in unbiased estimates of the cluster
properties (MT(r200) = (4.68 ± 1.56) × 1014 M� and Tg(r200) = (4.3 ± 0.9) keV). We gen-
erate a second simulated cluster using a generalized Navarro–Frenk–White pressure profile
and analyse it with an entropy-based model to take into account the temperature gradient
in our analysis and improve the cluster gas density distribution. This model also constrains
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the cluster physical parameters and the results show a radial decline in the gas temperature
as expected. The mean cluster total mass estimates are also within 1σ from the simulated
cluster true values: MT(r200) = (5.9 ± 3.4) × 1014 M� and Tg(r200) = (7.4 ± 2.6) keV using
parametrization II, and MT(r200) = (8.0 ± 5.6) × 1014 M� and Tg(r200) = (5.98 ± 2.43) keV
using parametrization III. However, we find that for at least interferometric SZ analysis in
practice at the present time, there is no differences in the Arcminute Microkelvin Imager
(AMI) visibilities between the two models. This may of course change as the instruments
improve.

Key words: methods: data analysis – galaxies: clusters: general – cosmic background
radiation – cosmology: observations.

1 IN T RO D U C T I O N

Clusters of galaxies contain large reservoirs of hot, ionized gas.
This plasma, although invisible in the optical waveband, can be
observed in both X-ray and microwave bands of the electromag-
netic spectrum through thermal Bremsstrahlung radiation and its
scattering of the cosmic microwave background (CMB), respec-
tively. This inverse Compton scattering results in a decrement in
the intensity of CMB photons in the direction of the cluster at fre-
quencies <218 GHz, and is known as the Sunyaev–Zel’dovich (SZ)
effect (Sunyaev & Zeldovich 1970; Birkinshaw 1999; Carlstrom,
Holder & Reese 2002). To describe the full spectral behaviour of
the SZ effect, one needs to consider three main components. These
include the thermal SZ effect caused by thermal (random) motion of
scattering electrons, including thermal weakly relativistic electrons,
the kinematic SZ effect caused by peculiar velocity of the cluster
with respect to Hubble flow, and relativistic effects caused by pres-
ence of the energetic non-thermal electrons in the hot plasma of the
cluster that are responsible for synchrotron emission of radio haloes
or relics. However, since the last two processes have significantly
smaller effects on the overall spectral distortion at cm wavelengths,
we only consider the thermal SZ effect in this paper. Moreover, we
ignore the effects of weakly relativistic thermal electrons, which are
negligible at cm wavelengths.

A main science driver for studying clusters through their thermal
SZ signal arises from the fact that SZ surface brightness is inde-
pendent of redshift. This provides us with a powerful opportunity
to study galaxy clusters out to high redshift. However, estimat-
ing the physical properties of the clusters depends strongly on the
model assumptions. In this paper we aim to show how employ-
ing different parametrizations for a cluster model affects the con-
straints on cluster properties. These tasks are conveniently carried
out through Bayesian inference using a highly efficient parameter
space sampling method: nested sampling (Skilling 2004). This sam-
pling method is employed using the package MULTINEST (Feroz &
Hobson 2008; Feroz, Hobson & Bridges 2009a). MULTINEST explores
the high-dimensional parameter space and calculates both the prob-
ability distribution of cluster parameters and the Bayesian evidence.
This algorithm is employed to analyse real multifrequency SZ ob-
servations made by the Arcminute Microkelvin Imager (AMI; AMI
Consortium: Zwart et al. 2008).

The rest of the paper is organized as follows. In Section 2, we
describe the AMI telescope. In Section 3, we discuss Bayesian in-
ference. Section 4 gives details of how we model interferometric
SZ data. In Section 5, we describe the modelling of the SZ signal
using both the isothermal β-model and an ‘entropy’-generalized
Navarro–Frenk–White (GNFW) pressure model. Section 6 outlines

the assumptions needed to estimate cluster physical parameters and
describes how different parametrizations introduce different con-
straints and biases in the resulting marginalized posterior proba-
bility distributions. In Section 7, we describe how to generate a
simulated SZ cluster in a consistent manner for both models, and
in Section 8, we present our results. Finally, Section 9 summarizes
our conclusions.

2 T H E A R C M I N U T E MI C RO K E LV I N I M AG E R

AMI comprises two arrays: the Small Array (SA) and the Large
Array (LA) located at the Mullard Radio Astronomy Observatory
near Cambridge. The SA consists of ten 3.7-m diameter equatorially
mounted antennas surrounded by an aluminium ground shield to
suppress ground-based interference and to ensure that the sidelobes
from the antennas do not terminate on warm emitting material.
The LA consists of eight 13-m diameter antennas. A summary of
the technical details of AMI is given in Table 1. Further details
of the instrument are in AMI Consortium: Zwart et al. (2008).

3 BAY ESI AN INFERENCE

Bayesian inference has been shown to provide an efficient and robust
approach to parameter estimation in astrophysics and cosmology
by offering consistent procedures for the estimation of a set of
parameters � within a model (or hypothesis) H using the data D
without loss of information. Bayes’ theorem states that

Pr(�|D, H ) = Pr(D|�,H )Pr(�|H )

Pr(D|H )
, (1)

where Pr(�|D, H ) ≡ P (�) is the posterior probability distri-
bution of the parameters, Pr(D|�,H ) ≡ L(�) is the likeli-
hood, Pr(�|H ) ≡ π(�) is the prior probability distribution and
Pr(D|H ) ≡ Z is the Bayesian evidence.

Bayesian inference in practice often divides into two parts: pa-
rameter estimation and model selection. In parameter estimation,
the normalizing evidence factor is usually ignored, since it is inde-
pendent of the parameters �, and inferences are obtained by taking
samples from the unnormalized posterior distributions using sam-
pling techniques. The posterior distribution can be subsequently
marginalized over each parameter to give individual parameter con-
straints.

In contrast to parameter estimation, for model selection the ev-
idence takes the central role and is simply the factor required to
normalize the posterior over �:

Z =
∫

L(�)π(�)dD�, (2)

C© 2012 The Authors, MNRAS 421, 1136–1154
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



1138 M. Olamaie et al.

Table 1. AMI technical summary.

SA LA

Antenna diameter 3.7 m 12.8 m
Number of antennas 10 8
Baseline lengths (current) 5–20 m 18–110 m
Primary beam at 15.7 GHz 20.1 arcmin 5.5 arcmin
Synthesized beam ≈3 arcmin ≈30 arcsec
Flux sensitivity 30 mJy s−1/2 3 mJy s−1/2

Observing frequency 13.5–18 GHz 13.5–18 GHz
Bandwidth 3.7 GHz 3.7 GHz
Number of channels 6 6
Channel bandwidth 0.75 GHz 0.75 GHz

where D is the dimensionality of the parameter space. The ques-
tion of model selection between two models H0 and H1 is then
decided by comparing their respective posterior probabilities, given
the observed data set D, via the model selection

R = Pr(H1|D)

Pr(H0|D)
= Pr(D|H1)Pr(H1)

Pr(D|H0)Pr(H0)
= Z1

Z0

Pr(H1)

Pr(H0)
, (3)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two
models. It should be noted that the evaluation of the multidimen-
sional integral in the Bayesian evidence is a challenging numerical
task which can be tackled by using MULTINEST. This Monte Carlo
method is targeted at the efficient calculation of the evidence, but
also produces posterior inferences as a by-product. This method
is also very efficient in sampling from posteriors that may contain
multiple modes or large (curving) degeneracies.

4 MOD ELLIN G INTERFERO METRIC SZ DATA

In the cluster plasma the central optical depth τ is typically between
0.001 and 0.01 and the temperature T varies from 107 to 108 K.
Thus the observed SZ surface brightness in the direction of electron
reservoir may be described as

δIν = TCMByf (ν)
∂Bν

∂T

∣∣∣∣
T =TCMB

. (4)

Here Bν is the blackbody spectrum, TCMB = 2.73 K (Fixsen et al.
1996) is the temperature of the CMB radiation, f (ν) = (x(ex +
1/ex − 1) − 4)(1 + δ(x, Te) is the frequency dependence of thermal
SZ signal, x = (hpν/kBTCMB), hp is Planck’s constant, ν is the fre-
quency and kB is Boltzmann’s constant. δ(x, Te) takes into account
the relativistic corrections in the study of the thermal SZ effect
which is due to the presence of thermal weakly relativistic electrons
in the intracluster medium (ICM) and is derived by solving the Kom-
paneets equation up to the higher orders (Rephaeli 1995; Challinor
& Lasenby 1998; Itoh, Kohyama & Nozawa 1998; Nozawa, Itoh
& Kohyama 1998; Pointecouteau, Giard & Barret 1998). It should
be noted that at 15 GHz (AMI observing frequency) x = 0.3 and
therefore the relativistic correction, as shown by Rephaeli (1995),
is negligible for kBTe ≤ 15 keV. The dimensionless parameter y,
known as Comptonization parameter, is the integral of the number
of collisions multiplied by the mean fractional energy change of
photons per collision, along the line of sight:

y = σT

mec2

∫ +∞

−∞
ne(r)kBTe(r) dl (5)

= σT

mec2

∫ +∞

−∞
Pe(r) dl, (6)

where ne(r), Pe(r) and Te are the electron number density, pressure
and temperature at radius r, respectively. σ T is Thomson scattering
cross-section, me is the electron mass, c is the speed of light and dl
is the line element along the line of sight. It should be noted that in
equation (6) we have used the ideal gas equation of state.

An interferometer like AMI operating at a frequency ν measures
samples from the complex visibility plane Ĩν(u). These are given
by a weighted Fourier transform of the surface brightness Iν(x),
namely

Ĩν(u) =
∫

Aν(x)Iν(x) exp(2πiu · x) dx, (7)

where x is the position relative to the phase centre, Aν(x) is the
(power) primary beam of the antennas at observing frequency ν

(normalized to unity at its peak) and u is the baseline vector in units
of wavelength. In our model, the measured visibilities are defined
as

Vν(u) = S̃ν(u) + Nν(u), (8)

where the signal component, S̃ν(u), contains the contributions from
the SZ cluster and identified radio point sources whereas the gen-
eralized noise part, Nν(u), contains contributions from background
of unsubtracted radio point sources, primary CMB anisotropies and
instrumental noise.

We assume a Gaussian distribution for the generalized noise. This
component then defines the likelihood function for the data:

L(�) = 1

ZN
exp

(
−1

2
χ2

)
, (9)

where χ2 is the standard statistic quantifying the misfit between the
observed data D and the predicted data Dp(�):

χ2 =
∑
ν,ν′

(
Dν − Dp

ν

)T
(Cν,ν′ )−1

(
Dν′ − Dp

ν′
)
, (10)

where ν and ν ′ are channel frequencies. C is the generalized noise
covariance matrix

C = Crec
ν,ν′ + CCMB

ν,ν′ + Cconf
ν,ν′ , (11)

and the normalization factor ZN is given by

ZN = (2π)(2Nvis)/2|C|1/2, (12)

where Nvis is the total number of visibilities. It should be noted
that since the main goal of this paper is to demonstrate the effect
of different parametrizations in modelling the SZ cluster signal, we
ignore the contributions due to subtracted and unsubtracted radio
point sources so that the non-Gaussian nature of these sources is
irrelevant. Moreover, the simulations, used in our analysis do not
include extragalactic radio sources or diffuse foreground emission
from the galaxy. The effects of the former have already been ad-
dressed in Feroz et al. (2009b), and here we wish to concentrate on
the different parametrization of the cluster. We also note that fore-
ground galactic emission is unlikely to be a major contaminant since
our interferometric observations resolve out large-scale emission.

5 A NA LY SIN G TH E SZ SIG NA L: β- M O D E L
V E R S U S G N F W M O D E L

As may be seen from equations (5) and (6), in order to calculate
the y parameter and therefore to model the SZ signal, we need to
assume either density and temperature profiles (Feroz et al. 2009b;
AMI Consortium: Rodrı́guez-Gonzálvez et al. 2011a,b; AMI Con-
sortium: Zwart et al. 2011) or a pressure profile (Nagai, Kravtsov
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& Vikhlinin 2007; Mroczkowski et al. 2009; Arnaud et al. 2010;
Plagge et al. 2010; Planck Collaboration 2011e) for the plasma con-
tent of the galaxy cluster. It is also possible to assume a profile for the
gas ‘entropy’ and then derive the distribution of gas pressure assum-
ing hydrostatic equilibrium (Allison et al. 2011). Indeed, in general,
one may choose to model the SZ signal by assuming parametrized
functional forms for any two linearly independent functions of the
ICM thermodynamic quantities.

Following our previous analysis methodology (Feroz et al.
2009b; AMI Consortium: Rodrı́guez-Gonzálvez et al. 2011a,b; AMI
Consortium: Zwart et al. 2011), we first review the application of the
isothermal β-model in modelling the SZ effect and extracting the
cluster physical parameters demonstrating the impact of different
parametrizations on the inferred cluster properties within a model.
We then repeat our analysis for the GNFW pressure profile, first
presented in Nagai et al. (2007), together with the entropy profile
presented in Allison et al. (2011) to model the SZ effect and derive
the cluster physical parameters. This approach has potential advan-
tages. It not only removes the assumption of isothermality but also
leads to a density profile that is more consistent with the results of
the both numerical analysis of hydrodynamical simulations (Voit
& Ponman 2003; Kravtsov, Vikhlinin & Nagai 2006; Nagai 2006;
Hallman et al. 2007) and deep X-ray observations of galaxy clusters
(Pratt & Arnaud 2002; Vikhlinin et al. 2006).

5.1 Isothermal β-model

This model assumes a β-profile for electron number density
(Cavaliere & Fusco-Femiano 1976, 1978) and a constant tempera-
ture throughout the cluster:

ne(r) = ne(0)(
1 + (

r2/r2
c

))3β/2 ,

Te(r) = Tg(r) = constant. (13)

Here ne(0) is the central electron number density, Te is the electron
temperature, which is assumed to be the same as the gas temperature,
Tg, and rc is the core radius. It should be noted that in our model,
β is considered as a free-fitting parameter (Plagge et al. 2010; AMI
Consortium: Zwart et al. 2011) and is not fixed to for example:
〈βfit〉 = 2/3 (Sarazin 1988).

Using this isothermal β-model, we can then calculate a map of
the y parameter on the sky along the line of sight by solving the
integral in equation (5) analytically (Birkinshaw 1999):

y(s) = y0

(
1 + s2

r2
c

)(1−3β)/2

, (14)

where β > 1/3, s is the projected distance from the centre of the
cluster on the sky such that r2 = s2 + l2 and y0 is the central
Comptonization parameter:

y0 =
√

πσTkBTgne(0)rc

mec2

	((3β/2) − (1/2))

	(3β/2)
. (15)

The integral of the y parameter over the solid angle 
 subtended by
the cluster is denoted by YSZ, and is proportional to the volume inte-
gral of the gas pressure. It is thus a good estimate for the total thermal
energy content of the cluster and its mass (see e.g. Bartlett & Silk
1994). Thus determining the normalization and the slope of YSZ–M
relation have been the subject of studies of the SZ effect (da Silva
et al. 2004; Kravtsov et al. 2006; Nagai 2006; Arnaud et al. 2010;
Plagge et al. 2010; Andersson et al. 2011; Planck Collaboration
2011a,b,c,d,e). In particular, Andersson et al. (2011) investigated

the YSZ–YX scaling relation within a sample of 15 clusters observed
by South Pole Telescope (SPT), Chandra and XMM–Newton and
found a slope of close to unity (0.96 ± 0.18). Similar studies were
carried out by Planck Collaboration (Planck Collaboration 2011b)
using a sample of 62 nearby (z < 0.5) clusters observed by both
Planck and XMM–Newton satellites. The results are consistent with
predictions from X-ray studies (Arnaud et al. 2010) and the ones
presented in Andersson et al. (2011). These studies at low redshifts
where the data are available from both X-ray and SZ observations of
galaxy clusters are crucial to calibrate the YSZ–M relation and such
a relation can then be scaled and used to determine masses of SZ
selected clusters at high redshifts in order to constrain cosmology.

We calculate the YSZ parameter for the isothermal β-model in
both cylindrical and spherical geometries. Assuming azimuthal
symmetry, Ycyl reads

Ycyl(R) = σT

mec2

∫ +∞

−∞
dl

∫ R

0
Pe(r)2πs ds (16)

=
∫ R

0
y(s)2πs ds (17)

=
⎧⎨⎩

πy0r2
c

3
2 − 3

2 β

{
(1 + (R/rc)2)(3−3β)/2 − 1

}
β �= 1,

πy0r
2
c ln[1 + (R/rc)2] β = 1,

where R is the projected radius of the cluster on the sky.
The integrated y parameter in the case of assuming spherical

geometry, Ysph, is given by integrating the plasma pressure within a
spherical volume of radius r

Ysph(r) = σT

mec2

∫ r

0
Pe(r ′)4πr

′2dr′ (18)

= σTkBTgne(0)

mec2

∫ r

0

4πr
′2dr ′(

1 + (r ′2/r2
c )

)3β/2 . (19)

It should be noted that there is an analytical solution for the above
integral provided that the upper limit is infinity and β > 1. However,
since we study the cluster to a finite extent and β varies over a wide
range including β < 1, we calculate Ysph numerically.

5.2 GNFW pressure profile

As the SZ surface brightness is proportional to the line-of-sight
integral of the electron pressure, assuming a pressure profile for
the hot plasma within the cluster to model the SZ effect seems a
reasonable choice. In this context, Nagai et al. (2007) analysed the
pressure profiles of a series of simulated clusters (Kravtsov, Nagai &
Vikhlinin 2005) as well as a sample of relaxed real clusters presented
in Vikhlinin et al. (2005, 2006). They found that the pressure profiles
of all of these clusters can be described by a generalization of
the Navarro–Frenk–White (NFW; Navarro, Frenk & White 1997)
model used to describe the dark matter haloes of simulated clusters.
The GNFW pressure profile (Nagai et al. 2007) is described as

Pe(r) = Pei

(r/rp)c(1 + (r/rp)a)(b−c)/a
, (20)

where Pei is the normalization coefficient of the pressure profile, rp

is the scale radius and the parameters (a, b, c) describe the slopes of
the pressure profile at r ≈ rp, r > rp and r 
 rp, respectively. We fix
the values for the slopes to the ones given in Arnaud et al. (2010):
(a, b, c) = (1.0620, 5.4807, 0.3292). Arnaud et al. (2010) derived
the pressure profiles for the Representative XMM–Newton Cluster
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Structure Survey (REXCESS) cluster sample from XMM–Newton
observations (Böhringer et al. 2007; Arnaud et al. 2010; Pratt et al.
2010) within r500. These pressure profiles also match (within r500)
three sets of different numerical simulations (Borgani et al. 2004;
Nagai et al. 2007; Piffaretti & Valdarnini 2008). They thus derived
an analytical function, the so-called universal pressure profile with
above-mentioned parameters. This profile has been successfully
tested against SZ data from SPT (Plagge et al. 2010) and the Planck
survey data (Planck Collaboration 2011e).

We calculate the map of the y parameter on the sky along the
line of sight by solving the integral in equation (6) numerically.
However, we note that the central Comptonization parameter y0 has
an analytical solution

y0 = 2σTPeirp

mec2

1

a

	((1 − c)/a)	((b − 1)/a)

	((b − c)/a)
. (21)

Similarly, to calculate the thermal energy content of the cluster
within a sphere with finite radius we use equation (18). In this
context, Arnaud et al. (2010) have shown that the pressure profile
flattens at the radius of 5r500 and used this to define the boundary of
the cluster. One can thus use this radius to define the total volume
integrated SZ signal:

Ytot = Y5r500 = σT

mec2

∫ 5r500

0
Pe(r ′)4πr

′2 dr ′. (22)

6 ESTIMATIN G C LUSTER PHYSICAL
PA R A M E T E R S

To study the physical parameters of the cluster, such as its total
mass and gas mass, we have to make some assumptions about the
dynamical state of the cluster. The most widely used assumptions
are that the gas distribution is in hydrostatic equilibrium with the
cluster total gravitational potential dominated by dark matter, and
that both dark matter and the plasma are spherically symmetric and
have the same centroid.

The cluster mass MT(rX) is also defined as the total amount
of matter internal to radius rX within which the mean density of
the cluster is X times the critical density at the cluster redshift.
Mathematically, the assumption of hydrostatic equilibrium applies
everywhere inside the cluster and relates total cluster mass internal
to radius r to the gas pressure gradient at that radius and hence to
the density and temperature gradients, respectively,

MT(r) = −kBTg(r)r

μG

[
d ln �g(r)

d ln r
+ d ln Tg(r)

d ln r

]
, (23)

where μ = 0.6mp (Sarazin 1988) is the mean mass per gas particle,
mp is the proton mass and G is the universal gravitational constant.
Assuming spherical geometry, it is also possible to calculate the gas
mass and total mass internal to radius rX :

Mg(rX) = 4π

∫ rX

0
r2�g(r) dr, (24)

MT(rX) = 4π

3
r3
X(X�crit(z)). (25)

Here �crit(z) = 3H (z)2/8πG is the critical density of
the Universe at the cluster redshift z and H (z) =
H0

√
(
M + 
�Q)(1 + z)3 + 
R(1 + z)4 + 
K(1 + z)2 is the

Hubble parameter at redshift z, where H0 = 100 h km s−1 Mpc−1

is the Hubble constant now. 
M measures the present mean mass

density including baryonic and non-baryonic dark matter in non-
relativistic regime, 
� takes into account the present value of the
dark energy, 
R measures the current energy density in the CMB
and the low-mass neutrinos, 
K describes the curvature of the uni-
verse and Q = (1+z)3[w0+wa] exp [−3waz/1 + z] is the dark energy
equation of state.

Moreover, it has been long known that the total mass of the cluster
is strongly correlated with its mean temperature. This arises from
both X-ray observations of galaxy clusters (Voit & Ponman 2003)
and the fact that the gravitational heating is the dominant process
in the clusters within the hierarchical structure formation scenario
(Kaiser 1986; Sarazin 2008).

Assuming virialization and that all cluster kinetic energy is in
gas internal energy suggests that T ∝ M2/3, where T is the mean
gas temperature within the virial radius and M is the cluster total
mass internal to that radius. However, an extensive range of studies
based both on observations of galaxy clusters and on numerical
simulations have been carried out aiming to determine the propor-
tionality coefficient of such relation (Evrard, Metzler & Navarro
1996; Eke et al. 1998a,b; Voit 2000, 2005; Yoshikawa, Jing & Suto
2000; Finoguenov, Reiprich & Böhringer 2001; Afshordi & Cen
2002; Evrard et al. 2002; Sanderson et al. 2003; Borgani et al. 2004;
Arnaud, Pointecouteau & Pratt 2005; Vikhlinin et al. 2006; Afshordi
et al. 2007; Maughan et al. 2007; Nagai et al. 2007). Finoguenov
et al. (2001) studied the observational mass–temperature (M–T) re-
lation of two sets of cluster samples. In their first sample they used
the assumption of isothermality whereas in the second set they knew
the temperature gradient of the clusters within the sample. In both
samples, they found that the discrepancy from the self-similarity
in the M–T relation is more pronounced in the low-mass clusters
(kBTg < 3.5keV) as non-gravitational processes become more dom-
inant in these clusters. Similar results were obtained by Arnaud et al.
(2005) when they analysed a sample of 10 nearby (z ≤ 0.15) re-
laxed clusters in the temperature range 2–9 keV. They showed that
the slope of the M–T relation for hot clusters is consistent with self-
similar expectation while for low-temperature (low-mass) clusters
the slope is significantly higher. Studies of the observational mass–
X-ray luminosity relation (Maughan et al. 2007) also show that the
scatter in the LX–M500 relation is dominated by cluster cores and
is almost insensitive to the merger status of the cluster. Theoretical
studies based on the adiabatic simulations and the hydrodynami-
cal simulations of cluster formation with gravitational heating only
also verify the slope of 3/2 in M–T relation (Evrard et al. 1996; Eke
et al. 1998a,b; Voit 2000; Yoshikawa et al. 2000), while numerical
simulations which take into account the non-gravitational heating
processes and the effect of the radiative cooling of the gas (Borgani
et al. 2004; Nagai et al. 2007) do predict a slightly higher slope.
Moreover, almost all of the above-mentioned studies do agree that
the discrepancy in the slope of the M–T relation could also be due to
the different procedures used for estimating masses in simulations
and observational analyses.

In this paper we therefore decided to follow the approach given
in Voit (2005). This is based on using the virial theorem to relate a
collapsing top-hat density perturbation model to a singular truncated
isothermal sphere. It also takes into account the finite boundary
pressure and assumes all kinetic energy is internal energy of the hot
plasma. This gives

kBTg(rX) = μ

2

(
X

2

)1/3

[GMT(rX)H (z)]2/3. (26)

It should be noted that above relation assumes that the virialization
occurs at rX .
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Based on the above assumptions, one can adopt different
parametrizations to study physical properties of the cluster within
a particular model (e.g. using either the assumption of hydrostatic
equilibrium or the M–T relation). These different approaches shed
light on the realism of the assumptions made throughout the analy-
sis and reveal different biases and constraints associated with them.
In a single-frequency observation that at least partially resolves
the cluster, the best one can hope to achieve in constraining an
empirical model of the SZ decrement is to estimate the central
position of the cluster (the position of the decrement) and two
further parameters – i.e. shape and scale parameters. The interpre-
tation of such constraints does however depend on the particular
parametrization.

Hence in the following sections we discuss different possi-
ble parametrizations within two models: isothermal β-model and
‘entropy’-GNFW pressure model. In doing so we try to disentangle
the thermal pressure built-in correlation between pairs of physi-
cal parameters that lead to the SZ effect intensity – i.e. (Tg, Mg),
(f g, MT), etc.

6.1 Isothermal β-model

Generally, there are two different parametrizations that one could
use in the analysis of the cluster SZ effect and deriving its physical
parameters. However, the assumption of isothermality provides an-
other form of parametrization where the gas temperature is assumed
as an input free parameter along with the assumption of hydrostatic
equilibrium (e.g. isothermal β-model or isothermal GNFW model).

In the following sections we discuss our three different
parametrizations for the isothermal β-model within our Bayesian
framework. It should be noted that in all of these parametrizations,
we employ physically based sampling parameters. Such parameters
reveal the structure of degeneracies in the cluster parameter space
more clearly than parameters that just describe the y-map such as
angular core radius θ c, shape β and central temperature decrement
�T0. We also note that throughout our analysis we impose the
additional constraint that the cluster has a non-zero r500.

6.1.1 Parametrization I

Our sampling parameters for this case are �c ≡ (xc, yc, rc,

β, Tg, Mg(r200), z), where xc and yc are cluster projected position
on the sky, rc and β are the parameters defining the density profile,
Tg is the gas temperature, Mg(r200) is the gas mass internal to radius
r200 and z is the cluster redshift. It should be noted that AMI can
typically measure the overdensity radii r500 and r200 for z > 0.15.
However, we choose to work in terms of an overdensity radius of
r200 since the constrains from AMI data on the cluster physical pa-
rameters are stronger at this radius and this radius is approximately
the virial radius. We further assume that the priors on sampling
parameters are separable (Feroz et al. 2009b) such that

π(�c) = π(xc) π(yc) π(rc) π(β) π(Tg) π(Mg(r200)) π(z). (27)

This implies that parametrization I ignores the known a priori cor-
relation between the cluster total mass and gas temperature. We
use Gaussian priors on cluster position parameters, centred on the
pointing centre and with standard deviation of 1 arcmin. We adopt
uniform priors on the cluster core radius, β and the gas tempera-
ture. As mentioned in Feroz et al. (2009b), for SZ pointed obser-
vations, where we know the cluster redshift from optical studies
and possibly the gas mass fraction from X-ray studies, we can
assume a separable prior on the gas mass and redshift, namely,

Table 2. Summary of the priors on the
sampling parameter set in parametrization
I. Note that N(μ, σ ) represents a Gaussian
probability distribution with mean μ and
standard deviation of σ and U(a, b) rep-
resents a uniform distribution between a
and b.

Parameter Prior

xc, yc N(0, 60) arcsec
rc U(10, 1000) h−1 kpc
β U(0.34, 2.5)
log Mg(r200) U(12, 14.5) h−2 M�
Tg U(0, 20) keV

π(Mg, z) ∝ π(M = Mg/fg, z) = π(M = Mg/fg)π(z) (Feroz et al.
2009b), where each factor has some simple functional form such
that their product gives a reasonable approximation to a known
mass function e.g. the Press–Schechter (Press & Schechter 1974)
mass function. We will assume such a form in our analysis where
π(Mg) will be taken to be uniform in log in the range (Mg)min =
1012 h−2 M� to (Mg)max = 5 × 1014 h−2 M� and the redshift is fixed
to the cluster redshift. A summary of the priors and their ranges for
this parametrization is presented in Table 2.

Having established our physical sampling parameters, modelling
the SZ signal is performed through the calculation of the y parame-
ter which requires the knowledge of parameters describing the 3D
plasma density and its temperature, namely rc, β, ne(0) and Tg.
We sample from rc, β and Tg but as shown below, deriving ne(0)
requires employing the assumptions of hydrostatic equilibrium,
isothermality and spherical geometry right from the beginning of the
analysis.

Substituting the isothermal β-model into the equation of hydro-
static equilibrium equation (23), we can then relate the MT(r200) to
our model parameters as well as to the temperature:

MT(r200) = 3βr3
200

r2
c + r2

200

kBTg

μG
, (28)

where we have used �g(r) = μene(r) with μe = 1.14mp (Jones et al.
1993; Mason & Myers 2000) defined as the mean gas mass per
electron. By combining equations (25) and (28) at r200, we first
calculate the overdensity radius of r200 and since Mg(r200) is also
one of our sampling parameters we can recover the central electron
number density by rearranging equation (24):

r200 =
√

9βkBTg

4πμG(200�crit(z))
− r2

c , (29)

ne(0) = Mg(r200)

4πμe

∫ r200

0

r ′2dr ′(
1 + (

r
′2/r2

c

))3β/2

. (30)

For cluster physical parameters we use the value of the overdensity
radius of r200 (equation 29) to calculate the cluster total mass in-
ternal to r200 assuming spherical geometry (equation 25). The gas
mass fraction at r200 is then simply f g(r200) = Mg(r200)/MT(r200).
As the central electron number density and plasma temperature
are assumed to be constants, we can in principle calculate clus-
ter physical parameters in any overdensity radius other than r200

by assuming that the hydrostatic equilibrium holds everywhere in
the cluster. In this paper we study the cluster properties at two
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overdensity radii r200 and r500. Extracting cluster physical parame-
ters at r500 in particular enables us to compare our results with the
results obtained from X-ray analysis of the clusters of galaxies. r500

is calculated by equating equations (23) and (25) and setting X =
500. Mg(r500) and MT(r500) are then derived using equations (24)
and (25), respectively.

6.1.2 Parametrizations II and III

Parametrization I does not take into account the correlation be-
tween the cluster total mass and its mean gas temperature. How-
ever, as mentioned earlier, observations of galaxy clusters and the-
oretical studies have both shown that there is a strong correlation
between these two cluster parameters. We have already used this
parametrization in the analyses of seven clusters out to the virial
radius (AMI Consortium: Zwart et al. 2011). We found that using
this parametrization along side the assumption of isothermality led
to strong biases in the estimation of cluster parameters. This im-
plies that, in the absence of a measured temperature profile, we
should eliminate gas temperature from the list of our sampling pa-
rameters and instead sample from either MT(r200) or Mg(r200) and
f g(r200). We choose total mass as a sampling parameter since this is
consistent with our cluster detection algorithm and analysis (AMI
Consortium: Shimwell et al. 2010). This form of parametrization
then allows us to calculate gas temperature either by using isother-
mal hydrostatic equilibrium (parametrization II) or virial relation
(parametrization III).

Our sampling parameters for these two parametrizations are
�c ≡ (xc, yc, rc, β, MT(r200), fg(r200), z) which are assumed to be
independent for the same reasons described in previous section such
that

π(�c) = π(xc) π(yc) π(rc) π(β) π(MT(r200)) π(fg(r200)) π(z). (31)

The priors on xc, yc, rc, β and z are the same as for parametrization
I. The prior on MT(r200) is taken to be uniform in logM in the range
Mmin = 1014 h−1 M� to Mmax = 5 × 1015 h−1 M� and the prior
of f g(r200) is set to be a Gaussian centred at the 7-year Wilkinson
Microwave Anisotropy Probe (WMAP7) best-fitting value: f g = 0.12
with a width of 0.016 (AMI Consortium: Rodrı́guez-Gonzálvez
et al. 2011a; Komatsu et al. 2011; Larson et al. 2011). A summary
of the priors and their ranges for these two parametrizations are
presented in Table 3. We calculate Mg(r200) from the definition
of gas mass fraction and r200 is determined assuming spherical
geometry, equation (25). Central electron number density is then
calculated using equation (30).

For parametrization II, the gas temperature at r200 is estimated as-
suming hydrostatic equilibrium using equation (28) and is assumed

Table 3. Summary of the priors
on the sampling parameter set in
parametrizations II and III.

Parameter Prior

xc, yc N(0, 60) arcsec
rc U(10, 1000) h−1 kpc
β U(0.34, 2.5)
log MT(r200) U(14, 15.5) h−1 M�
f g(r200) N(0.084, 0.016) h−1

to be constant throughout the cluster:

kBTg(r200) = μGMT(r200)
(
r2

200 + r2
c

)
3βr3

200

= (4πμG)(200�crit(z))
(
r2

200 + r2
c

)
9β

, (32)

where the last form is derived by substituting for MT(r200) using
equation (25). We refer to relation (32) as the HSEM–T relation.
Similar to parametrization I, once temperature and central electron
number density are determined, we can calculate cluster physical
properties at the overdensity radius of r500 using equations (23)–
(25) and setting X = 500.

For parametrization III, we calculate the mean gas temperature
within a virial radius of r200 using the M–T relation described in
equation (26), which is then assumed to be constant throughout the
cluster:

kBTg(r200) = 8.2

(
MT(r200)

1015 h−1 M�

)2/3 (
H (z)

H0

)2/3

keV. (33)

We refer to this relation as the virial M–T relation. This also implies
that virialization occurs at r200. In our analysis, we use this relation
to determine the mean gas temperature and once this is determined
we repeat the same procedure carried out for parametrizations I
and II to obtain cluster physical properties at the overdensity radius
r500.

6.2 Entropy-GNFW pressure model

As it was mentioned in Section 5.2 the choice of the GNFW pres-
sure profile to model the SZ signal is reasonable as the SZ surface
brightness is proportional the line-of-sight integral of the electron
pressure. However, in order to link the gravitational potential shape
to the baryonic physical properties of the ICM, one has to make
assumptions on the radial profile of another thermodynamical quan-
tity. Among the thermodynamical quantities of the ICM, entropy
has proved to be an important gas property within the cluster. En-
tropy is conserved during the adiabatic collapse of the gas into
the cluster gravitational potential well, however, it will be affected
by any non-gravitational processes such as radiative cooling, star
formation, energy feedback from supernovae explosions and active
galactic nuclei (AGN) activities. It therefore keeps a record of the
thermodynamic history of the ICM (Ponman, Cannon & Navarro
1999; Voit 2000, 2004, 2005; Pratt & Arnaud 2002; Allison et al.
2011).

Moreover, for a gravitationally collapsed gas in hydrostatic equi-
librium, entropy profile is expected to have an approximate power-
law distribution (≈r1.1; Lloyd-Davies, Ponman & Cannon 2000;
Voit 2005; Nagai et al. 2007; Pratt et al. 2010). However, there is
a large deviation from self-similarity in the entropy radial profile
in the inner region of the cluster (r < 0.1r200) due to the impact
of all of the non-gravitational mechanisms described above on the
thermodynamics of the ICM (Ponman et al. 1999; Lloyd-Davies
et al. 2000; Finoguenov 2002; Ponman, Sanderson & Finoguenov
2003; Pratt 2010). In the inner region, the results of the non-radiative
simulations and simulations that take into account AGN activities
plus preheating models predict a flat core in the entropy distribution
due to entropy mixing (Wadsley, Veeravalli & Couchman 2008;
Mitchell et al. 2009). The observed entropy profiles using X-ray
telescopes also flatten in the inner regions in general while having
similar external slopes (Pratt, Arnaud & Pointecouteau 2006). In
the outskirt of the cluster (out to virial radius and beyond), on the
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other hand, the results of the latest numerical simulations (Nagai
2011; Nagai & Lau 2011) and observational studies of the clusters
using Suzaku and XMM–Newton satellites at large radii including
A1795 (Bautz et al. 2009), PKS 0745−191 (George et al. 2009),
A2204 (Reiprich et al. 2009), A1413 (Hoshino et al. 2010), A1689
(Kawaharada et al. 2010), Virgo cluster (Urban et al. 2011) and
Perseus cluster (Simionescu et al. 2011) also show that behaviour
of ICM entropy deviates from the prediction of a spherically system-
atic shock-heated gas model (Tozzi & Norman 2001). According
to these studies major sources of this deviation may be due to in-
complete virialization, departure from hydrostatic equilibrium, gas
motion and gas clumping.

In this context and to derive the cluster physical parameters we
decided to adopt the entropy profile presented in Allison et al. (2011)
which is a β-model-like profile:

Ke(r) = Kei

(
1 + r2

r2
c

)α

, (34)

where Ke(r) is the plasma entropy at radius r, Kei is the normaliza-
tion coefficient of the entropy profile, rc and α are the parameters
defining the shape of the profile at different radii. Assuming an
entropy profile with above form guarantees the flat shape in the
inner region and a power-law distribution at the larger radii (up to
r500) where Ke(r) ∝ r2α with α ∼ 0.55. We note that in order to
take into account the behaviour of entropy at the clusters outskirts
we need to modify the assumed entropy profile with additional pa-
rameter and/or component. However, as the studies of this kind in
understanding the physics of the cluster outskirts and accurate mea-
surements of the ICM profiles in the cluster outer regions are still
ongoing, we do not study a modified form of our assumed entropy
profile here. We of course aim to consider a more general form in
our future analyses.

As for using the GNFW profile, one has indeed to make an as-
sumption on either the density, temperature or the entropy profile
shape in order to link the gravitational potential shape to the bary-
onic physical properties of the ICM. In this paper, we decided to
work with an assumption of entropy profile for all the reasons given
above. The combination of the GNFW pressure and the ‘α-model’
entropy profiles can then fully describe the large-scale properties of
clusters as they determine the form of the dark matter potential well
in addition to the structure of the ICM.

To relate the entropy to the other thermodynamical quantities
inside the ICM we use the definition of the entropy given in the
astronomy literature. For an adiabatic monatomic gas,

Ke = kBT n−2/3
e , (35)

Pe = Ken
5/3
e , (36)

which is related to the true thermodynamic entropy per gas particle
via S = (3/2)kBln (Ke) + S0, where S0 is a constant (Voit 2005).

Using equations (20) and (34)–(36) we can derive the 3D radial
profiles of the electron number density and the temperature:

ne(r) = nei

(
r

rp

)(−3/5)c [
1 +

(
r

rp

)a]−(3/5)((b−c)/a)

×
[

1 +
(

r

rc

)2
]−(3/5)α

, (37)

kBTe(r) = kBTei

(
r

rp

)(−2/5)c [
1 +

(
r

rp

)a]−(2/5)((b−c)/a)

×
[

1 +
(

r

rc

)2
](3/5)α

, (38)

where

nei =
(

Pei

Kei

)3/5

(39)

and

kBTei = P 2/5
ei K3/5

ei (40)

are the normalization coefficients for the electron number density
and the temperature profiles, respectively. We note that the above
derived electron number density has components that take into ac-
count both the fit for the inner slope of the cuspy cluster density
profiles and the steepening at larger radii (r � r500) (Pratt & Arnaud
2002; Vikhlinin et al. 2006).

As using this model to analyse the cluster SZ signal removes
the assumption of isothermality, parametrization I which assumes
a single core temperature as a free input parameter cannot be used
in the analysis using entropy-GNFW model or any non-isothermal
model. We therefore study the cluster SZ signal and its physical
properties using parametrizations II and III.

Our sampling parameters for this model are �c ≡
(xc, yc, rc, α, MT(r200), fg(r200), z). A summary of the priors and
their ranges for the ‘entropy’-GNFW pressure model is presented
in Table 4:

π(�c) = π(xc) π(yc) π(rc) π(α) π(MT(r200)) π(fg(r200)) π(z). (41)

Sampling from MT(r200) in both parametrizations leads to the esti-
mation of r200 assuming spherical geometry for the cluster, equa-
tion (25). Sampling from MT(r200) and f g(r200) also allows us to
calculate Mg(r200). nei is then

nei = Mg(r200)

4πμe
∫ r200

0 r ′2
(

r
rp

) (−3/5)c[
1+

(
r
rp

)a]−(3/5)((b−c)/a)
[

1+
(

r
rc

)2
]−(3/5)α

dr ′
.

(42)

In parametrization II we substitute the electron number density and
GNFW pressure profiles in the assumption of hydrostatic equilib-
rium ((1/ρgas)(dPgas/dr) = −(GMtot/r2)) at r200 and derive Pei. The
normalization coefficients for the temperature and entropy profiles,
kBTei and Kei, are then calculated by solving the equations (39) and
(40) simultaneously.

In parametrization III we calculate kBTe(r200) using virial M–T
relation, equation(33). kBTei is then calculated by substituting the
values derived for r200 and kBTe(r200) in temperature profile given
in equation (38). Similarly, the normalization coefficients for the
pressure and entropy profiles, Pei and Kei, are then calculated by
solving the equations (39) and (40) simultaneously.

Table 4. Summary of the priors on
the sampling parameter set in the
entropy-GNFW pressure model.

Parameter Prior

xc, yc N(0, 60) arcsec
rc U(10, 1000) h−1 kpc
α U(0.0, 1.0)
log MT(r200) U(14, 15.5) h−1 M�
f g(r200) N(0.084, 0.016) h−1

rp U(0.001, 3) h−1 Mpc
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In order to estimate the cluster physical parameters at r500 we use
the definition of gas concentration parameter c500 to estimate r500,

c500 = r500

rp
. (43)

We fix c500 to the value given in Arnaud et al. (2010) (c500 = 1.156).
With knowledge of r500 and all the four normalization coefficients
(Pei, Kei, kBTei, nei) we can calculate MT(r500), Mg(r500), f g(r500)
and kBT500.

7 SIM U LATED AMI SA DATA

In generating simulated SZ skies and observing them with a model
AMI SA, we have used the methods outlined in Hobson & Maisinger
(2002) and Grainge et al. (2002).

Generating a simulated cluster SZ signal using the isothermal
β-model requires the input parameters of z, Tg, ne(0), rc and β; this
set of parameters fully describes the Comptonization y parameter.
However, in order to verify the results of our analysis and to see if
our methodology is capable of recovering the true values associated
with the simulated cluster, it is instructive to estimate the cluster
physical parameters using the three parametrization discussed. We
note that any parametrized model within the hierarchical structure
formation of the universe for the ICM, including the isothermal
β-model, introduces constraints and biases in the inferred cluster
parameters. Moreover, we now show that it is possible to get dif-
ferent cluster physical parameters with the same set of input model
parameters derived using the two different M–T relations described
in Section 6.1.2.

For example, if we consider parametrization II we can use the
HSE M–T relation to calculate r200 given in equation (29). Mg(r200)
and MT(r200) are then calculated applying spherical geometry as-
sumptions described in equations (24) and (25), respectively. We
can also determine f g(r200).

However, if we consider parametrization III we first calculate
MT(r200) using the virial M–T relation given in equation (33). r200

and Mg(r200) are then estimated assuming spherical geometry for
the cluster (equations 25 and 24). A numerical example that leads
to different results in cluster parameters is given in Table 5. To
address this issue, we studied how f g(r200) varies as a function of
rc and β while ne(0), Tg and z are fixed for both the HSE and
virial M–T relations. Clearly, to obtain consistent results from both
parametrizations one should select the values of rc and β for which
the corresponding gas mass fraction ratio is one.

It should be noted that the same study may be carried out by
investigating the variation of the ratio of gas mass fractions with
either ne(0) or Tg while keeping rc and β constant. However we find
that the ratio is not sensitive to variation of these two parameters.

Table 5. An example of input cluster parameters for the isothermal β-model
that lead to inconsistent results using different parametrizations assuming
h = 0.7.

Input Assumed Derived Parametrization Parametrization
parameter value parameter I, II III

xc 0 r200 1.56 Mpc 1.71 Mpc
yc 0
rc 200 kpc MT(r200) 5.83 × 1014 M� 7.67 × 1014 M�
β 0.95
Tg 5 keV Mg(r200) 5.91 × 1013 M� 6.28 × 1013 M�

ne(0) 104 m−3

z 0.3 f g(r200) 0.102 0.082

Table 6. Cluster parameters for the isothermal β-model
assuming h = 0.7.

Input Assumed Derived Parametrization
parameter value parameter I, II, III

xc 0 r200 1.56 Mpc
yc 0 MT(r200) 5.83 × 1014 M�
rc 155 kpc Mg(r200) 6.36 × 1013 M�
β 0.79 f g(r200) 0.109
Tg 5 keV r500 0.98 Mpc

ne(0) 104 m−3 MT(r500) 3.64 × 1014 M�
z 0.3 Mg(r500) 4.13 × 1013 M�

f g(r500) 0.11

Given the above, we decided to generate a simulated cluster
with input parameters given in Table 6, which leads to consistent
physical parameters for the cluster, at both r200 and r500 in both
parametrizations. We assume that our cluster target is at declina-
tion δ = +40◦ observed for hour angles between −4 and +4 with
2-s sampling for 4 d and 8 h d−1. We calculate the Comptonization y
parameter on a grid of 512 × 512 pixels with pixel size of 30 arcsec.
A realization of the primary CMB is calculated using a power spec-
trum of primary anisotropies which was generated for l < 8000 using
CAMB (Lewis, Challinor & Lasenby 2000), with a �CDM cosmol-
ogy: 
M = 0.3, 
� = 0.7, σ 8 = 0.8, H0 = 70 km s−1 Mpc−1, w0 =
−1 and wa = 0. The CMB realization is then co-added to the cluster
in brightness temperature. It should be noted that in our simulation
we did not include extragalactic radio sources, or diffuse foreground
emission from the galaxy as we have already addressed the effects
of the former in Feroz et al. (2009b) and the foreground galactic
emission is unlikely to be a major contaminant since our interfero-
metric observations resolve out such large-scale emission. The map
is scaled by the primary beam appropriate to the measured value in
the frequency channel and transformed into the Fourier plane. The
resulting distribution is sampled at the required visibility points and
thermal noise of 0.54 Jy per channel per baseline in one second
which is appropriate to the measured sensitivity of the SA is added.
Fig. 1 shows a map of the SZ temperature decrement of the first
simulated cluster generated using the isothermal β-model.

To generate the second simulated cluster we use the GNFW pres-
sure profile to calculate the Comptonization y parameter. The input
parameters for this model, (Pei, rp), were selected to represent a
cluster with the same physical parameters at r200 and the same
noise level as the first cluster. Although the parameters rc, α, z and
Te(r200) do not contribute to the calculation of Comptonization y
parameter directly, their values were used to derive the parameters
describing the GNFW pressure profile by following the steps de-
scribed in Section 6.2 to ensure that they represent the cluster with
required physical parameters at r200. The cluster physical parame-
ters at different radii will be different from the first cluster due to the
different models describing the ICM and relaxing the assumption
of isothermality in the second cluster. A summary of the cluster
parameters is presented in Table 7. Fig. 2 shows a map of the SZ
temperature decrement of the second simulated cluster, generated
using the GNFW model.

8 A NA LY SI S AND RESULTS

In this section we present the results of our analysis for all three
parametrizations within the context of the isothermal β-model and
the entropy-GNFW pressure model. In each case we first study our
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Figure 1. Map of the simulated AMI SZ temperature decrement generated
with the isothermal β-model and parameters given in Table 6. Contours
at . . ., −3, − 2, 2, 3, . . . times noise (σ = 79 μJy beam−1), negative contours
are dashed. The coordinates are J2000.0.

Table 7. Cluster parameters for the entropy-GNFW model assuming
h = 0.7.

Input Assumed Derived ‘Entropy’-GNFW
parameter value parameter model

xc 0 r200 1.56 Mpc
yc 0 MT(r200) 5.83 × 1014 M�
rp 0.85 Mpc Mg(r200) 6.36 × 1013 M�
Pei 37 647.51 keV m−3 f g(r200) 0.109
z 0.3 r500 0.98 Mpc
rc 155 kpc MT(r500) 3.64 × 1014 M�
α 0.55 Mg(r500) 4.08 × 1013 M�

T200 5 keV f g(r500) 0.11
T500 6.95 keV

methodology in the absence of data. This can be carried out by
setting the likelihood to a constant value and hence the algorithm
explores the prior space. This analysis is crucial for understanding
the underlying biases and constraints imposed by the priors and
the model assumptions. Along with the analysis done using the
simulated AMI data, this approach reveals the constraints that mea-
surements of the SZ signal place on the cluster physical parameters
and the robustness of the assumptions made. It should be noted that
in all the plots of probability distributions, we explicitly include the
dimensionless Hubble parameter h = H0/(100 km s−1 Mpc−1) with
h set to 1.0.

8.1 Analysis using isothermal β-model – parametrization I

Figs 3 and 4 represent the results of a priors-only analysis showing
the sampling and derived parameters, respectively. 1D marginalized
posterior distributions of sampling parameters in Fig. 3 show that
we were able to recover the assumed prior probability distributions
for cluster position and the gas mass. However, this parametriza-

Figure 2. Map of the simulated AMI SZ temperature decrement gener-
ated with GNFW model and parameters given in Table 7. Contours at . . .,
−3, − 2, 2, 3, . . . times noise (σ = 81.5 μJy beam−1), negative contours are
dashed. The coordinates are J2000.0.

Figure 3. Marginal distributions for the sampling parameters with no data
for isothermal β-model – parametrization I.

tion clearly prefers higher temperature and β and the probability
distribution for rc falls as we go towards higher rc. This feature in
particular creates a void region in the 2D marginalized probability
distributions of β–rc and Tg–rc at higher rc which implies that low-
mass clusters are unlikely to have high rc and low β. This effect
is a direct result of imposing the constraint that r500 > 0. More-
over, as may be seen from Fig. 4, this choice of priors drives the
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Figure 4. Marginal distributions for the derived cluster physical parameters
with no data for isothermal β-model – parametrization I.

Figure 5. Marginal distributions of the sampling parameters for simulated
data for isothermal β-model – parametrization I.

posterior probability distributions of both the gas mass and the gas
mass fraction towards low values.

Figs 5 and 6 show the results of the analysis of the simulated SZ
cluster data. The vertical lines show the true values of the parame-
ters. Table 8 summarizes the mean, the dispersion and the maximum
likelihood of each parameter.

In Fig. 5, we notice the strong degeneracy between rc and β

(Grego et al. 2001). However, it is apparent that neither β nor Tg

is well constrained using this parametrization. Also, higher values

Figure 6. Marginal distributions of the derived cluster physical parameters
with simulated data for isothermal β-model – parametrization I.

Table 8. Simulated cluster parameters (mean, standard de-
viation and maximum likelihood) estimated using isothermal
β-model – parametrization I assuming h = 0.7.

Parameter μ ± σ μ̂

xc −2.1 ± 15.3 arcsec −0.6 arcsec
yc 6.3 ± 13.9 arcsec 5.5 arcsec
rc 391.26 ± 214.98 kpc 138.77 kpc
β 1.7 ± 0.5 0.98

Mg(r200) (3.41 ± 3.16) × 1013 M� 2.86 × 1013 M�
Tg 10.61 ± 5.28 keV 10.15 keV

MT(r500) (3.91 ± 3.41) × 1015 M� 1.49 × 1015 M�
r500 1.96 ± 0.69 Mpc 1.57 Mpc

Mg(r500) (2.71 ± 1.42) × 1013 M� 2.31 × 1013 M�
f g(r500) 0.15 ± 2.7 0.014

MT(r200) (6.43 ± 5.43) × 1015 M� 2.37 × 1015 M�
r200 3.14 ± 1.0 Mpc 2.49 Mpc

f g(r200) (0.14 ± 3.4) 0.012

than the true input parameters are preferred for both parameters.
This effect leads to two results: first, it yields a higher estimate
for r200 and so equation (28) overestimates the total mass; secondly,
since for this parametrization there is a negative degeneracy between
gas mass and temperature, the high temperature therefore leads the
marginalized posterior distribution for gas mass peaking towards
the lower end of the distribution although the recovered mean value
of Mg(r200) is within 1σ from its corresponding input value for the
simulated cluster. As a result of these two effects, the gas mass
fraction is driven even further to the lower end of the allowed range.
There is also a degeneracy between the two free parameters of β

and Tg; this degeneracy again originates from dependency of r200

on both parameters as given in equation (29).
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Figure 7. Marginal distributions of the sampling parameters with no data
for isothermal β-model – parametrization II.

Figure 8. Marginal distributions of the derived cluster physical parameters
with no data for isothermal β-model – parametrization II.

8.2 Analysis using isothermal β-model – parametrization II

Figs 7 and 8 show the results from prior-only analysis for
parametrization II. We recover the assumed prior probability dis-
tributions for cluster position, β, total mass and gas mass fraction.
There is a similar trend in the 1D posterior probability distribution
of rc to that mentioned in the parametrization I, which leads to a void
region in the 2D marginalized posterior distribution of MT(r200)–rc

for the same reason as discussed for the parametrization I. How-
ever, parametrization II prefers a lower temperature which arises

Figure 9. Marginal distributions of the sampling parameters with simulated
data for isothermal β-model – parametrization II.

Figure 10. Marginal distributions of the derived cluster physical parameters
with simulated data for isothermal β-model – parametrization II.

from the fact that HSE M–T relation used in this parametrization
(equation 32) is inversely proportional to β.

Figs 9 and 10 show the results of the analysis using simulated
SZ cluster data, with vertical lines representing the true parame-
ter values. Table 9 summarizes the mean, the dispersion and the
maximum likelihood values of each cluster parameter estimated
using parametrization II. A tight degeneracy between rc and β is
noticeable in the corresponding 2D marginalized probability dis-
tribution. β on the other hand is not well constrained and moves
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Table 9. Simulated cluster parameters (mean, standard de-
viation and maximum likelihood) estimated using isothermal
β-model – parametrization II assuming h = 0.7.

Parameter μ ± σ μ̂

xc −2.6 ± 15.7 arcsec 5.5 arcsec
yc 6.4 ± 14.5 arcsec 5.6 arcsec
rc 410.37 ± 237.24 kpc 135.43 kpc
β 1.7 ± 0.5 0.8

MT(r200) (6.8 ± 2.1) × 1014 M� 5.0 × 1014 M�
f g(r200) 0.12 ± 0.03 0.11

MT(r500) (3.5 ± 8.81) × 1013 M� 3.13 × 1014 M�
r500 0.96 ± 0.08 Mpc 0.93 Mpc

Mg(r500) (6.2 ± 1.6) × 1013 M� 3.9 × 1013 M�
f g(r500) 0.18 ± 0.05 0.12

r200 1.59 ± 1.57 Mpc 1.47 Mpc
Mg(r200) (7.76 ± 2.08) × 1013) M� 5.35 × 1013 M�

Tg 3.0 ± 1.2 keV 4.3 keV

towards higher values which results in the probability distribution
of temperature being driven to lower values again because of the 1/β
relationship in equation (32). However, this parametrization along
with the simulated SZ data reliably constrains MT(r200), Mg(r200)
and f g(r200). Comparing the 1D marginalized posterior distributions
of gas mass fractions at two overdensity radii r500 and r200 also re-
veals that we cannot constrain the radial behaviour of the gas mass
fraction using this parametrization, as f g(r500) exhibits too wide a
probability distribution. For f g(r200), we seem to have recovered the
input prior distribution.

8.3 Analysis using isothermal β-model – parametrization III

The results of the analysis with no data are plotted in Figs 11 and
12. It is evident that, while the assumed prior probability distribu-
tions for the cluster position, total mass and gas mass fraction are
recovered, the two sampling parameters rc and β show the same

Figure 11. Marginal distributions of the sampling parameters with no data
for isothermal β-model – parametrization III.

Figure 12. Marginal distributions of the derived cluster physical parameters
with no data for isothermal β-model – parametrization III.

behaviours as discussed for the other two parametrizations. We also
see a trend towards lower values in the 1D posterior probability
distribution of temperature. However this behaviour is due to the
direct relationship between the total mass and the temperature in
this parametrization and the specific prior distribution we have as-
sumed for the total mass which clearly has a higher probability at
the lower masses.

Figs 13 and 14 represent the marginalized posterior distributions
from the analysis of simulated SZ cluster data for sampling and

Figure 13. Marginal distributions of the sampling parameters with simu-
lated data for isothermal β-model – parametrization III.
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Figure 14. Marginal distributions of the derived cluster physical parameters
with simulated data for isothermal β-model – parametrization III.

Table 10. Simulated cluster parameters estimated (mean,
standard deviation and maximum likelihood) using isother-
mal β-model – parametrization III assuming h = 0.7.

Parameter μ ± σ μ̂

xc −3.0 ± 15.6 arcsec −5.0 arcsec
yc 6.4 ± 14.4 arcsec 5.7 arcsec
rc 395.11 ± 226.21 kpc 142.14 kpc
β 1.7 ± 0.5 1.1

MT(r200) (4.68 ± 1.56) × 1014 M� 4.46 × 1014 M�
f g(r200) 0.11 ± 0.03 0.1

MT(r500) (7.35 ± 3.0) × 1014 M� 4.58 × 1014 M�
r500 1.21 ± 0.17 Mpc 1.06 Mpc

Mg(r500) (4.50 ± 1.04) × 1013 M� 4.00 × 1013 M�
f g(r500) 0.07 ± 0.03 0.09

r200 1.43 ± 1.50 Mpc 1.42 Mpc
Mg(r200) (5.14 ± 1.6) × 1013 M� 4.49 × 1013 M�

Tg 4.3 ± 0.9 keV 4.2 keV

derived parameters, respectively, while in Table 10 we present the
mean, the dispersion and the maximum likelihood of each cluster
parameter estimated using parametrization III. The strong degen-
eracy between rc and β is quite apparent in this parametrization,
while β is poorly constrained and biased towards higher values. We
note that, since the SZ analysis constrains cluster total mass internal
to the radius r200 and we use the virial M–T relation (equation 33)
to derive cluster average temperature within this radius, the result
of temperature estimation is less biased and more reliable than the
parametrizations I and II in recovering the temperature true value.
We have used this parametrization in our follow-up analysis of the
real data where we studied a joint weak gravitational lensing and
SZ analysis of six clusters (AMI Consortium: Hurley-Walker et al.
2011) and high and moderate X-ray luminosity sample of Local
Cluster Substructure Survey (LoCuSS) clusters (AMI Consortium:

Rodrı́guez-Gonzálvez et al. 2011b; AMI Consortium: Shimwell
et al. 2011).

8.4 Analysis using entropy-GNFW pressure model

Similar to the isothermal β-model we first studied our methodology
for the ‘entropy’-GNFW pressure model with no data. The results
are represented in Figs 15 and 16. This analysis again helps us
understand which parameters are constrained by SZ measurement

Figure 15. Marginal distributions of the sampling parameters with no data
for ‘entropy’-GNFW pressure model.

Figure 16. Marginal distributions of the derived cluster physical parameters
with no data for ‘entropy’-GNFW pressure model.
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as well as to check the algorithm in retrieving the prior probabil-
ity distributions. From both 1D and 2D marginalized probability
distributions it is clear that we are able to recover the input pri-
ors probability distributions and the probability distributions of the
derived parameters are according to their corresponding functional
dependencies on the sampling parameters.

Figs 17 and 18 and Table 11 show the results of our analysis for
‘entropy’-GNFW pressure profile using parametrization II, while

Figure 17. Marginal distributions of the sampling parameters with simu-
lated data for ‘entropy’-GNFW pressure model using parametrization II.

Figure 18. Marginal distributions of the derived cluster physical parameters
with simulated data for ‘entropy’-GNFW pressure model using parametriza-
tion II.

Table 11. Simulated cluster parameters estimated (mean, standard
deviation and maximum likelihood) using ‘entropy’-GNFW pressure
model – parametrization II assuming h = 0.7.

Parameter μ ± σ μ̂

xc −8.9 ± 10.04 arcsec −9.3 arcsec
yc 6.3 ± 9.5 arcsec 7.8 arcsec
rc 770.43 ± 382.29 kpc 1358.86 kpc
α 1.2 ± 0.67 1.2

MT(r200) (5.86 × 1014 ± 3.43 × 1014) M� 3.3 × 1014 M�
f g(r200) 0.11 ± 0.02 0.13

rp 1.03 ± 0.33 Mpc 0.87 Mpc
MT(r500) (8.86 ± 11.57) × 1014 M� 4.0 × 1014 M�

r500 1.18 ± 0.39 Mpc 1.01 Mpc
Mg(r500) (5.71 ± 4.08) × 1013 M� 3.06 × 1013 M�
f g(r500) 0.1 ± 0.09 0.07
Tg(r500) 7.5 ± 1.8 keV 6.5 keV

r200 1.57 ± 0.28 Mpc 1.3 Mpc
Mg(r200) (6.53 ± 3.67) × 1013 M� 4.14 × 1013 M�
Tg(r200) 7.4 ± 2.6 keV 5.02 keV

Figure 19. Marginal distributions of the sampling parameters with simu-
lated data for ‘entropy’-GNFW pressure model using parametrization III.

Figs 19 and 20 and Table 12 show the results of the same analysis
using parametrization III. We note that in both analyses rc and α

the parameters that define the shape of the entropy profile are not
constrained while the scaling radius, rp, which defines the GNFW
pressure profile is completely constrained. As a result we notice
similar constraints in the estimation of r500 in both parametriza-
tions since we assume a fixed c500. We also note the degeneracies
between MT(r200)–rc and MT(r200)–α which are because of the de-
pendency of Pei on these two free parameters. On the other hand the
MT(r200)–rp degeneracy seen in Figs 17 and 19 is due to the intrinsic
degeneracy that exists between the cluster size and the volume in-
tegrated Comptonization parameter (YSZ–rp degeneracy) in the SZ
measurements (Planck Collaboration 2011d). Moreover, comparing
Tg(r500) and Tg(r200) (Tables 11 and 12) confirms a radial decline
in the ICM temperature distribution as expected.
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Figure 20. Marginal distributions of the derived cluster physical parameters
with simulated data for ‘entropy’-GNFW pressure model using parametriza-
tion III.

Table 12. Simulated cluster parameters estimated (mean, standard
deviation and maximum likelihood) using entropy-GNFW pressure
model – parametrization III assuming h = 0.7.

Parameter μ ± σ μ̂

xc −8.8 ± 9.8 arcsec −10.4 arcsec
yc 6.6 ± 9.5 arcsec 7.2 arcsec
rc 798.7 ± 376.8 kpc 1280.8 kpc
α 1.3 ± 0.69 1.3

MT(r200) (8.0 × 1014 ± 5.6 × 1014) M� 4.5 × 1014 M�
f g(r200) 0.11 ± 0.03 0.13

rp 1.0 ± 0.3 Mpc 0.86 Mpc
MT(r500) (6.6 ± 1.14) × 1014 M� 3.4 × 1014 M�

r500 1.14 ± 0.43 Mpc 1.0 Mpc
Mg(r500) (7.35 ± 5.92) × 1013 M� 3.67 × 1013 M�
f g(r500) 0.14 ± 0.14 0.11
Tg(r500) 6.0 ± 1.4 keV 5.5 keV

r200 1.7 ± 0.28 Mpc 1.4 Mpc
Mg(r200) (9.18 ± 5.71) × 1013 M� 5.91 × 1013 M�
Tg(r200) 5.98 ± 2.43 keV 4.2 keV

Overall, both parametrizations could constrain the cluster phys-
ical parameters, however, analysis using parametrization III leads
to a tighter constrain on both Tg(r500) and Tg(r200). The results of
Parametrization III once more show that this parametrization can
reliably be used in the analysis of clusters of galaxies as it is less
model dependent and produces unbiased results in particular when
the assumption of hydrostatic equilibrium breaks, in young or dis-
turbed clusters (parametrization II).

9 D I S C U S S I O N A N D C O N C L U S I O N S

We have studied two parametrized models, the traditional isother-
mal β-model and the ‘entropy’-GNFW pressure model, to analyse

the SZ effect from galaxy clusters and extract their physical pa-
rameters using AMI SA simulated data. In our analysis we have
described the current assumptions made on the dynamical state of
the ICM including spherical geometry, hydrostatic equilibrium and
the virial M–T relation. In particular we have shown how differ-
ent parametrizations which relate the thermodynamical quantities
describing the ICM to the cluster global properties via these as-
sumptions lead to biases on the cluster physical parameters within
a particular model.

In this context, we first generated a simulated cluster using the
isothermal β-model observed with the AMI SA and used these sim-
ulated data to study three different parametrizations in deriving the
cluster physical parameters. We showed that in generating AMI sim-
ulated data, it is extremely important to select the model parameters
describing the SZ signal in a way that leads to the consistent cluster
parameter inferences upon using the three different parametrization
methods.

We found that each parametrization introduces different con-
straints and biases in the posterior probability distribution of the
inferred cluster parameters which arise from the way we imple-
ment assumptions about the cluster structure and its composition.
The biases in the posterior probability distributions of the cluster
parameters are more pronounced in parametrizations I and II, as
the results depend strongly on the relatively unconstrained cluster
model shape parameters: rc and β. However, the biases introduced
by the choice of priors are even worse in parametrization I, in
which the gas temperature is assumed to be an independent free
parameter. This, along with the assumption of isothermality, causes
the priors to dominate in extracting the cluster physical parameters
regardless the type of prior chosen for the gas temperature (AMI
Consortium: Rodrı́guez-Gonzálvez et al. 2011a; AMI Consortium:
Zwart et al. 2011). The cluster physical parameters estimated using
parametrization I depend strongly on the model parameters. Al-
though it can constrain the cluster position and its Mg(r200), it fails
to recover the true input values of most of the simulated cluster
properties. For example the inferred values for mass and tempera-
ture at r200 are MT(r200) = (6.43 ± 5.43) × 1015 M� and Tg(r200) =
(10.61 ± 5.28) keV whereas the corresponding input values of sim-
ulated cluster are MT(r200) = 5.83 × 1014 M� and Tg(r200) = 5 keV.
In terms of the application to the real data, we have noticed simi-
lar biases in the results of our analysis of seven clusters using this
parametrization (AMI Consortium: Zwart et al. 2011). In order to
improve our analysis methodology in parametrizations II and III, the
correlation between the cluster total mass and its gas temperature
is taken into account. In parametrization II we relate MT(r200) and
Tg(r200) using the hydrostatic equilibrium whereas in parametriza-
tion III we use virial M–T relationship. It should be noted that
the derived Tg(r200) in parametrization II is the gas temperature
at the overdensity radius r200 which is then assumed to be constant
throughout the cluster. In parametrization III, however, Tg(r200) is
the mean gas temperature internal to radius r200 and is assumed to
be constant. We notice that analysing the same simulated data set
using parametrization II can constrain the 1D posterior distribu-
tion of the cluster physical parameters better than parametrization
I such that MT(r200) = (6.8 ± 2.1) × 1014 M� and Tg(r200) =
(3.0 ± 1.2) keV. Since parametrization II uses the full parametric
hydrostatic equilibrium, the temperature estimate depends on rc and
β and is therefore biased low. These results were also confirmed
in our analysis of the bullet-like cluster A2146 (AMI Consortium:
Rodrı́guez-Gonzálvez et al. 2011a). Relating the cluster total mass
and its temperature via virial theorem in parametrization III leads to
less bias in cluster physical parameters compared to the other two
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parametrizations as it is less model dependent: MT(r200) = (4.68 ±
1.56) × 1014 M� and Tg(r200) = (4.3 ± 0.9) keV.

A detailed comparison between our different parametrizations
both using simulated data and on the bullet-like cluster A2146
(AMI Consortium: Rodrı́guez-Gonzálvez et al. 2011a) found that
parametrization III can give more reliable results for cluster physical
properties as it is less dependent on model parameters. Parametriza-
tion II also gives convincing estimates for the cluster total mass and
its gas content although its temperature estimate is poorly justified,
as it depends strongly on the model parameters. Moreover, young or
disturbed clusters are unlikely to be well described by hydrostatic
equilibrium. We therefore used parametrization III as our adopted
analysis methodology in our follow-up studies of the real clusters
including the joint SZ and weak lensing analysis of six clusters
(AMI Consortium: Hurley-Walker et al. 2011) and the analysis of
LoCuss cluster sample (AMI Consortium: Rodrı́guez-Gonzálvez
et al. 2011b; AMI Consortium: Shimwell et al. 2011).

In order to make sure that our results are not biased by one
realization of primordial CMB, we have studied 100 CMB real-
izations for the three parametrizations. The 1D marginalized pos-
terior probability distributions of MT(r200) and Tg(r200) are shown
in Figs 21–23 for each parametrization. The solid blue line repre-
sents the true value corresponding to the simulated cluster and the
dashed red line shows the mean value of the distributions. Table 13
presents the numerical results of this analysis. Comparing the 1D
posterior distributions along with the mean values of the MT(r200)
estimates in the three parametrizations for these 100 realizations
shows that parametrization I can hardly constrain the simulated
cluster properties and recover the input true values. Parametrization
II can constrain the cluster total mass, however, the gas temperature
estimate is biased low as it depends on unconstrained model shape
parameters. On the other hand, parametrization III can indeed con-

Figure 21. 100 realizations of 1D marginalized posterior probability distri-
butions of MT(r200) and Tg(r200) using isothermal β-model – parametriza-
tion I. The solid blue line represents the true value corresponding to the
simulated cluster and the dashed red line shows the mean value of the
distributions.

Figure 22. 100 realizations of 1D marginalized posterior probability distri-
butions of MT(r200) and Tg(r200) using isothermal β-model – parametriza-
tion II. The solid blue line represents the true value corresponding to the
simulated cluster and the dashed red line shows the mean value of the
distributions.

Table 13. The results of 100 CMB realizations for the three
parametrizations assuming h = 0.7.

Parametrization MT(r200) M� Tg(r200) keV

I (6.18 ± 5.23) × 1015 11.18 ± 5.16
II (8.067 ± 2.61) × 1014 3.94 ± 1.67
III (5.94 ± 2.26) × 1014 4.97 ± 1.21

strain both cluster mass and its gas temperature and the results are
unbiased.

In order to remove the assumption of isothermality which is of
course a poor assumption both within the cluster inner region and at
the large radii and to improve our analysis model for the cluster ICM
which can be fitted accurately throughout the cluster, we also studied
the SZ effect using ‘entropy’-GNFW pressure model. This model
assumes a 3D β-model-like radial profile describing the entropy
in the ICM as well as the GNFW profile for the plasma pressure.
This choice is reasonable as the entropy is a conserved quantity
and describes the structure of the ICM while the pressure is related
to the dark matter component of the cluster. Moreover, among all
the thermodynamical quantities describing the ICM, entropy and
pressure show more self-similar distribution in the outskirts of the
cluster. The combination of these two profiles then allows us to relate
the SZ observable properties to the cluster physical parameters such
as its total mass. This model also allows the electron pressure and
its number density profiles to have different distributions leading
to a 3D radial temperature profile. In this context we simulated a
second cluster using an entropy-GNFW pressure profile with the
same physical parameters and thermal noise as the first cluster at
r200.
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Figure 23. 100 realizations of 1D marginalized posterior probability distri-
butions of MT(r200) and Tg(r200) using isothermal β-model – parametriza-
tion III. The solid blue line represents the true value corresponding to the
simulated cluster and the dashed red line shows the mean value of the
distributions.

We then analysed the second simulated cluster using ‘entropy’-
GNFW pressure model with different parametrizations. In this
model temperature is no longer isothermal so that we cannot use
parametrization I where a single temperature is assumed as an
independent input parameter. The results of our analysis using
parametrizations II and III show that while the characteristic scal-
ing radius describing the GNFW pressure profile is constrained, the
shape parameters defining the entropy profile remain unconstrained.
Moreover, all the cluster physical parameters lie within 1σ error bars
from the corresponding true values of the simulated cluster in the
two parametrizations. However, parametrization III provides tighter
constrains in 1D marginalized posterior distribution of the temper-
ature and the overall results are less model dependent so that it can
be reliably used in the analysis of galaxy clusters in particular when
the assumption of hydrostatic equilibrium breaks (e.g. in disturbed
clusters and clusters that are going through merging).

We conclude that using the ‘entropy’-GNFW pressure model
overcomes the limitations of the isothermal β-model in fitting clus-
ter parameters over a broad radial extent. However, AMI simulated
data do not strongly prefer one model over the other. We investigated
this conclusion further by fitting both GNFW pressure profile and
isothermal β-model to a simulated cluster with θ500 = 2.5 arcmin
and Y500 = 2.5 × 10−3 (arcmin)2. The result is shown in Fig. 24
with blue dashed line representing the fit using the isothermal β-
model and the red representing the fit using GNFW pressure profile.
However, we aim to compare these two models in our future studies
using the real data.
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