429 research outputs found

    Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    We show that there are discrete gauge symmetries protect naturally heavy X particles from decaying into the ordinary light particles in the supersymmetric standard model. This makes the proposal very attractive that the superheavy X particles constitute a part of the dark matter in the present universe. It is more interesting that there are a class of discrete gauge symmetries which naturally accommodate a long-lived unstable X particle. We find that in some discrete Z_{10} models, for example, a superheavy X particle has lifetime \tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14} GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) couple to the X. We briefly discuss a possible explanation for the recently observed ultra-high-energy cosmic ray events by the decay of this unstable X particle.Comment: 9 pages, Late

    The clustering of ultra-high energy cosmic rays and their sources

    Full text link
    The sky distribution of cosmic rays with energies above the 'GZK cutoff' holds important clues to their origin. The AGASA data, although consistent with isotropy, shows evidence for small-angle clustering, and it has been argued that such clusters are aligned with BL Lacertae objects, implicating these as sources. It has also been suggested that clusters can arise if the cosmic rays come from the decays of very massive relic particles in the Galactic halo, due to the expected clumping of cold dark matter. We examine these claims and show that both are in fact not justified.Comment: 13 pages, 8 figures, version in press at Phys. Rev.

    Long Lived Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    The recently observed ultra-high energy (UHE) cosmic rays beyond the Greisen-Zatsepin-Kuzmin bound can be explained by the decays of some superheavy XX particles forming a part of dark matter in our universe. We consider various discrete gauge symmetries ZN{\bf Z}_N to ensure the required long lifetime (τX≃1010−1022years\tau_X \simeq 10^{10}-10^{22} years) of the XX particle to explain the UHE cosmic rays in the minimal supersymmetric standard model (MSSM) with massive Majorana neutrinos. We show that there is no anomaly-free discrete gauge symmetry to make the lifetime of the XX particle sufficiently long in the MSSM with the XX particle. We find, however, possible solutions to this problem especially by enlarging the particle contents in the MSSM. We show a number of solutions introducing an extra pair of singlets YY and Yˉ\bar{Y} which have fractional ZN{\bf Z}_N (N=2,3) charges. The present experimental constraints on the XX particle are briefly discussed.Comment: 27 pages, Late

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone

    Get PDF
    The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission

    Rhizosphere priming effects on soil carbon and nitrogen mineralization

    Full text link
    Living roots and their rhizodeposits affect microbial activity and soil carbon (C) and nitrogen (N) mineralization. This so-called rhizosphere priming effect (RPE) has been increasingly recognized recently. However, the magnitude of the RPE and its driving mechanisms remain elusive. Here we investigated the RPE of two plant species (soybean and sunflower) grown in two soil types (a farm or a prairie soil) and sampled at two phenological stages (vegetative and mature stages) over an 88-day period in a greenhouse experiment. We measured soil C mineralization using a continuous 13C-labeling method, and quantified gross N mineralization with a 15N-pool dilution technique. We found that living roots significantly enhanced soil C mineralization, by 27-245%. This positive RPE on soil C mineralization did not vary between the two soils or the two phenological stages, but was significantly greater in sunflower compared to soybean. The magnitude of the RPE was positively correlated with rhizosphere respiration rate across all treatments, suggesting the variation of RPE among treatments was likely caused by variations in root activity and rhizodeposit quantity. Moreover, living roots stimulated gross N mineralization rate by 36-62% in five treatments, while they had no significant impact in the other three treatments. We also quantified soil microbial biomass and extracellular enzyme activity when plants were at the vegetative stage. Generally, living roots increased microbial biomass carbon by 0-28%, ÎČ-glucosidase activity by 19-56%, and oxidative enzyme activity by 0-46%. These results are consistent with the positive rhizosphere effect on soil C (45-79%) and N (10-52%) mineralization measured at the same period. We also found significant positive relationships between ÎČ-glucosidase activity and soil C mineralization rates and between oxidative enzyme activity and gross N mineralization rates across treatments. These relationships provide clear evidence for the microbial activation hypothesis of RPE. Our results demonstrate that root-soil-microbial interactions can stimulate soil C and N mineralization through rhizosphere effects. The relationships between the RPE and rhizosphere respiration rate and soil enzyme activity can be used for explicit representations of RPE in soil organic matter models. © 2014

    Identification of beauty and charm quark jets at LHCb

    Get PDF
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select bb- and cc-quark jets is measured using data recorded by LHCb from proton-proton collisions at s=7\sqrt{s}=7 TeV in 2011 and at s=8\sqrt{s}=8 TeV in 2012. The efficiency for identifying a b(c)b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT>20p_{\rm T} > 20 GeV and pseudorapidity 2.2<η<4.22.2 < \eta < 4.2. The dependence of the performance on the pTp_{\rm T} and η\eta of the jet is also measured

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-ÎČ PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-ÎČ positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-ÎČ burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Search for Bâșc decays to the pp‟πâș final state

    Get PDF
    A search for the decays of the B + c meson to pp-π + is performed for the first time using a data sample corresponding to an integrated luminosity of 3.0 fb -1 collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. No signal is found and an upper limit, at 95% confidence level, is set, fcfu×B(B + c →ppπ + ) < 3.6×10-8 in the kinematic region m(pp) < 2.85 GeV/c2, p T (B) < 20 GeV/c and 2.0 < y(B) < 4.5, where B is the branching fraction and f c (f u ) is the fragmentation fraction of the b quark into a B c + (B + ) meson
    • 

    corecore