59 research outputs found

    Constraints on Earth system functioning at the Paleocene-Eocene Thermal Maximum from the marine silicon cycle

    Get PDF
    The Paleocene‐Eocene Thermal Maximum (PETM, ca. 56 Ma) is marked by a negative carbon isotope excursion (CIE) and increased global temperatures. The CIE is thought to result from the release of 13C‐depleted carbon, although the source(s) of carbon and triggers for its release, its rate of release, and the mechanisms by which the Earth system recovered are all debated. Many of the proposed mechanisms for the onset and recovery phases of the PETM make testable predictions about the marine silica cycle, making silicon isotope records a promising tool to address open questions about the PETM. We analyzed silicon isotope ratios (δ30Si) in radiolarian tests and sponge spicules from the Western North Atlantic (ODP Site 1051) across the PETM. Radiolarian δ30Si decreases by 0.6‰ from a background of 1‰ coeval with the CIE, while sponge δ30Si remains consistent at 0.2‰. Using a box model to test the Si cycle response to various scenarios, we find the data are best explained by a weak silicate weathering feedback, implying the recovery was mostly driven by nondiatom organic carbon burial, the other major long‐term carbon sink. We find no resolvable evidence for a volcanic trigger for carbon release, or for a change in regional oceanography. Better understanding of radiolarian Si isotope fractionation and more Si isotope records spanning the PETM are needed to confirm the global validity of these conclusions, but they highlight how the coupling between the silica and carbon cycles can be exploited to yield insight into the functioning of the Earth system

    The impact of phosphorus on projected Sub-Saharan Africa food security futures

    Get PDF
    Sub-Saharan Africa must urgently improve food security. Phosphorus availability is one of the major barriers to this due to low historical agricultural use. Shared socioeconomic pathways (SSPs) indicate that only a sustainable (SSP1) or a fossil fuelled future (SSP5) can improve food security (in terms of price, availability, and risk of hunger) whilst nationalistic (SSP3) and unequal (SSP4) pathways worsen food security. Furthermore, sustainable SSP1 requires limited cropland expansion and low phosphorus use whilst the nationalistic SSP3 is as environmentally damaging as the fossil fuelled pathway. The middle of the road future (SSP2) maintains today’s inadequate food security levels only by using approximately 440 million tonnes of phosphate rock. Whilst this is within the current global reserve estimates the market price alone for a commonly used fertiliser (DAP) would cost US$ 130 ± 25 billion for agriculture over the period 2020 to 2050 and the farmgate price could be two to five times higher due to additional costs (e.g. transport, taxation etc.). Thus, to improve food security, economic growth within a sustainability context (SSP1) and the avoidance of nationalist ideology (SSP3) should be prioritised

    Soil chemistry aspects of predicting future phosphorus requirements in Sub-Saharan Africa

    Get PDF
    Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modelling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modelling predicts twice as much P required to 2050 as our new proposed model. Plain language summary Improving food security in Sub‐Saharan Africa over the coming decades requires a dramatic increase in agricultural yields. Global yield increase has been driven by, amongst other factors, the widespread use of fertilisers including phosphorus. The use of fertilisers in Sub‐Saharan Africa is often prohibitively expensive and thus the most efficient use of phosphorus should be targeted. Soil chemistry largely controls phosphorus efficiency in agriculture, for example iron and aluminium which exist naturally in soil reduce the availability of phosphate to plants. Yet soil chemistry has not been included in several influential large‐scale modelling studies which estimate phosphorus requirements in Sub‐Saharan Africa to 2050. In this study we show that predictions of phosphorus requirement to feed the population of Sub‐Saharan Africa to 2050 can significantly change if soil chemistry is included (e.g. Somalia with up to 50% difference). Our findings are a new step towards making predictive decision‐making tool for phosphorus fertiliser management in Sub‐Saharan Africa considering the variability of soil chemistry

    Раціональність як реляційність: синтетична єдність відмінностей в трансцендентальному просторі границі

    Get PDF
    У статті висвітлюються проблеми «постсучасної» раціональності, визначальною характеристикою котрої покладається іманентна пограничність. Відношення та Іншість розглядаються як визначальні предикати раціональності, які в класичній парадигмі імплікують принципи рефлексійності, конструктивності, співмірності. Корелятами означених принципів у постструктуралістській раціональності визначаються повторність (ітеративність), фрагментарність, подвоєння, розрізняння. Конгруентність класичної та постсучасної раціональності зумовлена еквівалентністю понять трансцендентальності та пограничності. Синтетична єдність (розбіжність та зв'язок) з її специфікацією принципами пов’язання та розрізняння, визначається через медіативну функцію судження, структура якого фундується параметрами реляційності.В статье освещаются проблемы «постсовременной» рациональности, определяющей характеристикой которой полагается имманентная пограничность. Отношение и Другость рассматриваются как определяющие предикаты рациональности, которые имплицируют принципы рефлексивности, конструктивности, соразмерности в классической парадигме. Коррелятами обозначенных принципов в постструктуралистской рациональности являются повторность (итеративность), фрагментарность, удвоение, различание. Конгруэнтность классической и постсоврменной рациональности обусловлена эквивалентностью понятий трансцендентальности и пограничности. Синтетическое единств (различие и связь) с его спецификацией в позициях увязывания и различания, определяется через медиативную функцию суждения, структура которого фундируется параметрами реляционности.The paper illuminates some problems of the post-contemporary rationality that possesses the immanent borderness as its distinctive feature. The Relationality and the Anotherness are investigaled as the common predicates of rationality that implicate the “classical” principles of reflexity, constructiveness, proportionality. The main principles of the poststructuralistic rationality correlating with the classical ones are recurrence (iterativity), doubleness, fragmentariness, differance. The congruence of the classical rationality and the post-contemporary one is caused by the equivalency of the concepts “transcendentality” and “borderness”. The synthetical unity (relation between deviation and connection) with its specification by the linking and the differance principles is determined by the mediative function of the assertion that is structured by the relationality parameters

    Modeling water quality in the Anthropocene : directions for the next-generation aquatic ecosystem models

    Get PDF
    “Everything changes and nothing stands still” (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models — and ecological models in general — as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability. Highlights • We present a research agenda to enhance water quality modeling in the Anthropocene. • We review adaptive responses in organisms and ecosystems to global environmental change. • We focus on eco-evolutionary, novel ecosystem and social-ecological dynamics. • These dynamics act at different integration levels and different time scales. • Lake Victoria is an iconic example of an evolving novel social-ecological system

    The activation of eco-driving mental models: can text messages prime drivers to use their existing knowledge and skills?

    Get PDF
    Eco-driving campaigns have traditionally assumed that drivers lack the necessary knowledge and skills and that this is something that needs rectifying. Therefore, many support systems have been designed to closely guide drivers and fine-tune their proficiency. However, research suggests that drivers already possess a substantial amount of the necessary knowledge and skills regarding eco-driving. In previous studies, participants used these effectively when they were explicitly asked to drive fuel-efficiently. In contrast, they used their safe driving skills when they were instructed to drive as they would normally. Hence, it is assumed that many drivers choose not to engage purposefully in eco-driving in their everyday lives. The aim of the current study was to investigate the effect of simple, periodic text messages (nine messages in 2 weeks) on drivers’ eco- and safe driving performance. It was hypothesised that provision of eco-driving primes and advice would encourage the activation of their eco-driving mental models and that comparable safety primes increase driving safety. For this purpose, a driving simulator experiment was conducted. All participants performed a pre-test drive and were then randomly divided into four groups, which received different interventions. For a period of 2 weeks, one group received text messages with eco-driving primes and another group received safety primes. A third group received advice messages on how to eco-drive. The fourth group were instructed by the experimenter to drive fuel-efficiently, immediately before driving, with no text message intervention. A post-test drive measured behavioural changes in scenarios deemed relevant to eco- and safe driving. The results suggest that the eco-driving prime and advice text messages did not have the desired effect. In comparison, asking drivers to drive fuel-efficiently led to eco-driving behaviours. These outcomes demonstrate the difficulty in changing ingrained habits. Future research is needed to strengthen such messages or activate existing knowledge and skills in other ways, so driver behaviour can be changed in cost-efficient ways

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF

    Nitrogen leaching from natural ecosystems under global change: a modelling study

    No full text
    To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901–2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88 % by 1997–2006 relative to pre-industrial conditions. Climate change led globally to a 31 % increase in N leaching, but the size and direction of change varied among global regions: leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33 % globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73 % with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 Tg N yr−1 in 1901–1911 to 18.5 Tg N yr−1 in 1997–2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation

    Global model with 0.5° by 0.5° resolution applied in this study, taking soil N budgets (accounting for ammonia volatilization) as a starting point to compute surface runoff, leaching from subsoil to groundwater, denitrification in soils, and transport and denitrification in groundwater and riparian zones

    No full text
    <p><strong>Figure 1.</strong> Global model with 0.5° by 0.5° resolution applied in this study, taking soil N budgets (accounting for ammonia volatilization) as a starting point to compute surface runoff, leaching from subsoil to groundwater, denitrification in soils, and transport and denitrification in groundwater and riparian zones. Not all grid cells include all compartments, depending on the presence of shallow groundwater, deep groundwater and surface water.</p> <p><strong>Abstract</strong></p> <p>The role of submarine groundwater discharge (SGD), the leakage of groundwater from aquifers into coastal waters, in coastal eutrophication has been demonstrated mostly for the North American and European coastlines, but poorly quantified in other regions. Here, we present the first spatially explicit global estimates of N inputs via SGD to coastal waters and show that it has increased from about 1.0 to 1.4 Tg of nitrate (NO<sub>3</sub>-N) per year over the second half of the 20th century. Since this increase is not accompanied by an equivalent increase of groundwater phosphorus (P) and silicon (Si), SGD transport of nitrate is an important factor for the development of harmful algal blooms in coastal waters. Groundwater fluxes of N are linked to areas with high runoff and intensive anthropogenic activity on land, with Southeast Asia, parts of North and Central America, and Europe being hot spots.</p
    corecore