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Deniz Özkundakci . Thomas Petzoldt . Karsten Rinke . Barbara J. Robson . René Sachse .
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Abstract Here, we present a community perspective

on how to explore, exploit and evolve the diversity in

aquatic ecosystem models. These models play an

important role in understanding the functioning of

aquatic ecosystems, filling in observation gaps and

developing effective strategies for water quality

management. In this spirit, numerous models have

been developed since the 1970s. We set off to explore

model diversity by making an inventory among 42

aquatic ecosystem modellers, by categorizing the

resulting set of models and by analysing them for

diversity. We then focus on how to exploit model

diversity by comparing and combining different

aspects of existing models. Finally, we discuss how

model diversity came about in the past and could

evolve in the future. Throughout our study, we use
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analogies from biodiversity research to analyse and

interpret model diversity. We recommend to make

models publicly available through open-source poli-

cies, to standardize documentation and technical

implementation of models, and to compare models

through ensemble modelling and interdisciplinary

approaches. We end with our perspective on how the

field of aquatic ecosystem modelling might develop in

the next 5–10 years. To strive for clarity and to

improve readability for non-modellers, we include a

glossary.

Keywords Water quality � Ecology �Geochemistry �
Hydrology � Hydraulics � Hydrodynamics � Physical
environment � Socio-economics � Model availability �
Standardization � Linking

Introduction

The societal niche for aquatic ecosystem models:

developing short-term and long-term management

strategies

Aquatic ecosystems provide a range of ecosystem

services (Finlayson et al. 2005), in particular by being

sources and sinks for natural resources and

anthropogenic substances. For example, as a source,

they provide water for drinking, irrigation, hydro-

power and industrial processes. Moreover, they

provide many food products. More recently, their

aesthetic and recreational value has been recognized

with associated health benefits. Aquatic ecosystems

also act as a sink for various substances, including

sewage, agricultural run-off, discharge from impound-

ments, industrial waste and thermally polluted water.

Equally important, they provide a critical habitat for

organisms that form an important part of the biodi-

versity. Each of the anthropogenic and natural source

functions puts specific requirements on the quality of

the aquatic ecosystem (Postel and Richter 2003;

Keeler et al. 2012). At the same time, these quality

requirements can be hampered by both the source

(through overexploitation) and the sink (through

pollution) functions of the aquatic ecosystem. Aquatic

ecosystem models (hereafter referred to as AEMs)

frequently play a role in quantifying ecosystem

services and developing strategies for water quality

management (Jørgensen 2010; Mooij et al. 2010). The

AEMs used for this purpose are often engineering-

oriented based on accepted theory and methodology

for routine applications. Engineering models may be

complex and linked to one another, but components

are always tested. Using projections and scenario
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analyses, engineering-oriented AEMs can assess the

various source and sink functions to help optimize and

understand aquatic ecosystem function in terms of

human and conservation needs. For example, AEMs

have been applied as management tools to evaluate the

efficiency of eutrophication mitigation strategies, to

understand oceanic dynamics (e.g. the global carbon

cycle), and to predict biotic responses to climate

change (Arhonditsis and Brett 2004). AEMs can also

be used for near real-time modelling and forecasting to

facilitate immediate management decisions on, for

instance, the shutdown of drinking water intakes

(Huang et al. 2012; Silva et al. 2014) or the suitability

of water for swimming (Ibelings et al. 2003).

The scientific niche for AEMs: advancement

of theory

A strong scientific motivation for the development of

AEMs is to encapsulate and improve our understand-

ing of aquatic ecosystems. For instance, scientific

AEMs can help to close mass balances of essential

elements such as carbon, nitrogen and phosphorus and

thereby allow quantifying the role of aquatic systems

in national and global carbon and nutrient budgets

(Robson et al. 2008; Harrison et al. 2012). Keeping

track of mass balances can also provide help in

answering stoichiometric questions (Giordani et al.

2008; Li et al. 2014). Additionally, scientific AEMs

can help untangle the feedbacks between aquatic

biodiversity and aquatic ecosystem functioning

(Bruggeman and Kooijman 2007), and also achieve

an integrated ecosystem health assessment (Xu et al.

2001). Yet another timely research topic studied with

models is assessing the resilience of ecosystems to

changes in external forcing arising from nonlinear

functional relationships between ecosystem compo-

nents (Ludwig et al. 1997; Scheffer et al. 2001). This

has been done by analysing the strength of various

positive and negative feedback loops in the socio-

ecological system (Van Der Heide et al. 2007;

Downing et al. 2014). Such studies generate new

hypotheses that can then be tested in laboratories or in

the field. Models are therefore effective scientific tools

because they allow undertaking ‘virtual experiments’

that would be too expensive or impractical to carry out

in real-world systems (Meyer et al. 2009).

The methodological niche for AEMs: filling data

gaps and inverse modelling

Another motivation to develop AEMs is to fill gaps in

observations. For instance, some quantities (e.g.

primary production) are measured at high spatial
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resolution, but at a low temporal resolution and vice

versa. Modelling then allows for interpolation in space

and time such as seen in climatology (Jeffrey et al.

2001). Other examples include interpolating through

time between satellite images or across space to fill

gaps caused by cloud cover (Hossain et al. 2015).

Inverse modelling is another application within the

methodological niche for AEMs, in which specific

system parameters or process rates that are difficult to

measure are estimated. In contrast to forward mod-

elling, inverse modelling uses observations to estimate

the processes or factors that created these observations

(Tarantola 2005). Since inverse modelling in general

lacks a unique solution, it is important to include all a

priori information on model parameters and processes

to reduce the uncertainty on the results (Tarantola

2005; Jacob 2007). Methods used for inverse mod-

elling include Bayesian inference, often used with the

Markov chain Monte Carlo technique (Press 2012;

Gelman et al. 2014) and Frequentist inference (Press

2012). Different software packages for implementa-

tion of these methods exist (Vézina and Platt 1988;

Reichert 1994; Lunn et al. 2000; Soetaert and Petzoldt

2010; Van Oevelen et al. 2010; Doherty 2015).

Existing diversity in AEMs

Due to numerous potential AEM applications (in an

analogy to biodiversity, we refer to these as ‘model

niches’), scientists began to develop these models in

the 1960s, in tact with the availability of the necessary

computing infrastructure to implement them (e.g.

King and Paulik 1967). Since then, an array of AEMs

has been developed around the world, with each

development directed by a specific set of questions and

hypotheses. In many cases, investigators and

engineers implemented their own models rather than

starting with an existing model. While this practice of

creating one’s ‘ownmodel’ can be criticized because it

bears the inefficiency of ‘reinventing the wheel’

(Mooij et al. 2010), it has produced a great diversity

in approaches, formulations, complexity and applica-

tions, which can be seen as an advantage. In addition,

the extra investment is often compensated by a more

efficient model application for the issue at hand and a

better model understanding. Furthermore, the avail-

ability of modelling resources through the Internet

provides new opportunities to explore and exploit this

diversity and will most likely affect the evolution of

model diversity in the near future.

A working definition of what constitutes an AEM

This paper aims to present a current perspective on

how we can explore, exploit and evolve the existing

diversity in AEMs as seen by a diverse and interna-

tional community of aquatic scientists (the authors).

We try to reach out to not only the skilled modellers,

but also aquatic ecologists who are inexperienced in

modelling. To make this study feasible, we need a

definition of what constitutes an AEM. Here, we

define an AEM as ‘a formal procedure by which the

impact of external or internal forcing on aquatic

ecosystem state(s) can be estimated’. In most cases,

AEMs cover many processes and are spatially explicit,

but both are not a prerequisite. According to our

definition, a minimal model that qualitatively

describes the ecosystem response to external forcing

also qualifies as an AEM (Fig. 1). We exclude models

that focus on one single component of an ecosystem

(e.g. models that only deal with the population

dynamics of a given species), but include models that

zoom in on one part of the ecosystem (e.g. the fish or

macrophyte community) while treating the remainder

of the ecosystem in an aggregated way (typically

through the use of carrying capacities or mortality

rates). Two distinct classes of AEMs exist: those that

formulate a direct mathematical relation between

forcing and state (statistical models), and those that

are formulated in terms of the processes underlying

this relation (process-based models). Statistical mod-

els directly link forcing and state that can be derived

from data with standard statistical techniques. Linking

process-based models to data involves less
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standardized calibration and validation techniques.

The advantage of process-based models is that they

provide insight into the mechanisms underlying

change and recovery. This study is primarily focussed

on the diversity in process-based models, although we

acknowledge the diversity and usefulness of statistical

models that directly link forcing and state. AEMs, as

defined here, combine elements from a number of

scientific modelling disciplines (Fig. 2). In addition to

defining what constitutes an AEM, we developed a

glossary of terminology used in the field of aquatic

ecosystem modelling (given in Text Box 1). The

purpose of this glossary was to strive for clarity within

the context of this study. This glossary may also be of

help to newcomers in the modelling field. While

working on the glossary, we noted that it is impossible

to make a clear distinction between models (the

mathematical description of a system), their imple-

mentation (e.g. software packages) and their applica-

tions (where model inputs/parameters are adapted to a

specific ecosystem and confronted with data) because

there is great diversity in how these components are

perceived and combined by different modellers.

How this study is structured

We first focus on exploring AEM diversity by

discussing approaches to inventorize, categorize and

document these models and finally present a more

formal analysis of model diversity. To support our

discussion, we compare a number of AEMs, hydro-

logical and hydrodynamic drivers, relevant modelling

approaches and supportive software for model imple-

mentation and model analyses that came about in a

survey among modellers participating the third

AEMON (Aquatic Ecosystem MOdelling Network)

workshop held in February 2015. To put our analysis

in perspective, we compare the number of AEMs,

hydrological and hydrodynamic drivers, relevant

modelling approaches and supportive software for

model implementation and model analyses with

published lists (Table 1). We cover both marine and

freshwater AEMs, with a bias towards the latter group.

All data can be found in Online Resource 1. It is

remarkable that earlier attempts by Benz et al. (2001)

have little overlap with our overview, which shows

that there is a greater diversity than presented here.We

then focus on exploiting diversity and ask several

questions. How can we make use of the full breadth of

expertise captured in existing AEMs, and how can we

easily switch between spatial configurations or soft-

ware packages to run and analyse the models using

package-specific tools?We continue with stressing the

Ec
os

ys
te

m
 st

at
e

External forcing

a

External forcing

b

External forcing

cFig. 1 Example of output

of a conceptual AEM

showing a linear (a),
catastrophic (b) and
hysteretic (c) response of
ecosystem state to external

forcing. Modified after

Scheffer et al. (2001)

Fig. 2 A diagram showing the major modelling disciplines that

can contribute to aquatic ecosystem models (AEMs). There is a

great diversity among AEMs in the weight given to each

component: each modeller should select the most appropriate

combination and size of the petals to fit the research question
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potential of ensemble modelling, and we end this

section with a discussion on how to exploit the full

range of approaches used in aquatic ecosystem

modelling. In the section on evolving diversity, we

describe the origins of the current diversity in AEMs

and discuss how model diversity could evolve in the

future and how standardization can facilitate this

process. In the final section, we discuss how we can

learn from concepts and techniques in biodiversity

research in our study on model diversity. Finally, we

provide a list of practical recommendations and a

perspective for the field of aquatic ecosystem mod-

elling in the next decade.

Exploring diversity in AEMs

AEMs have been and are being developed indepen-

dently in many places around the world. In this

section, we explore model diversity.

Making an inventory of the diversity in AEMs

An exploratory survey among 42 modellers partici-

pating in the third AEMONworkshop 2015 resulted in

133 different models, packages or programming

languages in use in the field of aquatic ecosystem

modelling (data presented in Online Resource 1,

Datasheet 2). We performed a Redundancy Analysis

(RDA, using the methods of Oksanen et al. 2014) on

39 AEMs from this list (results in Online Resource 2).

This analysis demonstrates that the professional

affiliation and country of origin played an important

role in determining knowledge and usage of models.

The driver behind this could be the research group’s

background, but also the diverging needs that moti-

vated the development of models, such as whether

there are mainly shallow lakes or deep reservoirs in a

specific country. Three approaches seem suited for

developing a more formal and ongoing inventory of

model diversity: (1) lists, (2) wikis and (3) code

repositories. We are not aware of an up-to-date list of

AEMs with a good coverage of the field. Laudable

attempts to list ecological models are UFIS (Knorren-

schild et al. 1996) and the ECOBAS initiative by

Joachim Benz (http://www.ecobas.org, Benz et al.

2001). ECOBAS provides metadata on a wide range of

models, including hydrological, hydrodynamic,

meteorological and ecological models. However, the

website has only rarely been updated since 2009;

Table 1 An overview of the number of AEMs, hydrological and hydrodynamic drivers, supportive software and relevant modelling

approaches considered in this and other studies

Explorative and exploitative activity Number considered

in this study

Number considered in

other studies

Glossary of AEMs, hydrological and hydrodynamic drivers, supportive software

and relevant modelling approaches (Text Box 1)

278 14a

66b

[100c

1360d

33e

Survey of knowledge and expertise level of AEMs, hydrological and hydrodynamic

drivers, supportive software and relevant modelling approaches (Online Resource

2)

133

Categorization of AEMs (Online Resource 3) 42 15f

27g

6h

Comparison of state variables of AEMs (Online Resource 4) 24

Comparison of process formulations of AEMs 0 13i

4j

Ensemble modelling with multiple AEMs 0 3k

a Refsgaard and Henriksen (2004), b http://www.mossco.de/doc/acronyms.html, c http://en.wikipedia.org/wiki (NB: no overview

page of AEMs), d Benz et al. (2001) http://www.ecobas.org (NB: ecological models in general, only 18 overlap with the terms in Text

Box 1), e https://wiki.csiro.au/display/C2CCOP/Inventory?of?C2C?models, f Mooij et al. (2010), g Weijerman et al. (2015),
h Lenhart et al. (2010), i Tian (2006), j Recknagel et al. (2008), k Trolle et al. (2014)
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updating is a challenge for any top-down initiatives.

An alternative could be an open community-based

approach, such as wikis, where multiple editors

independently contribute information. The obvious

and overwhelmingly successful example of this

approach is Wikipedia (http://www.wikipedia.org)

which maintains many lists, for instance of pro-

gramming languages (http://en.wikipedia.org/wiki/

List_of_programming_languages). The potential

lack of consistency of such community-based lists

seems to be compensated by the scope and imme-

diacy of the information provided and the commit-

ment resulting from the community-based approach.

The third option is code repositories, such as

SourceForge (http://sf.net) and GitHub (http://

github.com), which are increasingly popular plat-

forms enabling open-source communities to develop

software and distribute code.

Documenting diversity in AEMs

To preserve and communicate model diversity,

proper documentation of models is crucial. There

is no standard way of documenting AEMs, and

different model developers have different methods

to obtain and save their information. The existing

ODD protocol (overview, design concepts and

details) for individual-based models (Grimm et al.

2006), the Earth System documentation project

(http://es-doc.org) or the TRACE approach

(TRAnsparent and Comprehensive Ecological mod-

elling documentation) might be adopted by aquatic

ecosystem modellers in the future (Grimm et al.

2014). Models can be documented through model

homepages, scientific publications or grey literature

reports. Wikipedia is not an option because it has a

strict policy of not being a primary source of doc-

umentation but instead only providing referenced

information. To be useful in the current practice of

scientific research, any type of documentation

should be accessible through the Internet, preferably

with open access. The majority (71 %) of the AEMs

analysed in Online Resource 3 has a website that

provides model documentation. Furthermore, for

86 % of the models, we could identify a primary

publication; however, only three out of 42 AEMs

analysed in Online Resource 3 have a page on

Wikipedia (Ecopath, PCLake and PCDitch).

Categorizing diversity in AEMs

To cope with the diversity in models, some form of

categorization is useful. ‘Bining’ models in clearly

defined categories provide an overview for newcomers

and experts, and help to identify what is missing. From

the list of models in Online Resource 1, Datasheet 2,

we selected those models that can be classified as an

AEM according to our definition. This resulted in a list

of 42 AEMs (see for data Online Resource 1,

Datasheet 3). For these models, we were able to

obtain metadata from experts to categorize them (see

Online Resource 3 for all the details and see Text

Box 1 for an explanation of all the technical terms

used below). For the modelling approach, it was found

that over 75 % of the models were qualified as being

dynamic, process-based, biogeochemical, mass-bal-

anced, compartmental or complex dynamical

(Fig. 3a). Over 45 % of them were qualified as being

stoichiometric or spatially explicit as well as being a

competition, a consumer-resource, a food web or a

community model. About 25 % of themwere qualified

as being of the NPZD type of model (nutrients,

phytoplankton, zooplankton, detritus) as well as being

a hydrodynamic model. One out of seven of these

models contained individual-based approaches, more

specifically being an individual-based community

model, a trait-based model or a dynamic energy

budget model. The 42 AEMs cover every aquatic

habitat, with 22 % of models claiming global appli-

cability (Fig. 3b). Eutrophication is an application

domain of no less than 98 % of the analysed models

(Fig. 3c). Next, in decreasing order of importance are

climate change, carbon cycle, fisheries, biodiversity

loss and adaptive processes. 90 % of the 42 models

allow for dynamic simulations (Fig. 3e). The remain-

ing models are based on statistical relations. About

half of the models are implemented in frameworks that

have tools for sensitivity analysis, calibration, valida-

tion and uncertainty analysis. Here, we define a

framework as a software package that can be com-

bined with user-written code to create a software

application (for a more extensive definition, see Text

Box 1). Tools for bifurcation analysis are less com-

mon. Over two-third of the models are implemented

within an existing modelling framework, with the

R/deSolve package (Soetaert et al. 2010) and the

Framework for Aquatic Biogeochemical Models
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(FABM) (Bruggeman and Bolding 2014) being the

most used of the 12 modelling frameworks that we

encountered (Fig. 3d). One can rightfully say that the

field of aquatic ecosystem modelling is quite scattered

when it comes to the use of modelling frameworks.

This notion was one of the incentives for developing

Delft3D-Delwaq (Deltares 2014), FABM (Bruggeman

and Bolding 2014) and the Database Approach to

Modelling (DATM) (Mooij et al. 2014). With 50 %,

FORTRAN is the dominant programming language

for coding AEMs (Fig. 3f). Next comes C or C??

(together 26 %), Delphi (15 %) and R (15 %). The

majority of AEMs are implemented as ordinary or

partial differential equations (Fig. 3g).
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Fig. 3 Outcome of a

categorization of 42 AEMs
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Analysing diversity in AEMs

Analysing model diversity goes beyond the more

descriptive approach mentioned above. Here, the aim

was to identify whether we are dealing with true

diversity or ‘pseudo-diversity’. Models are often

related to each other. The MyLake model (Saloranta

and Andersen 2007), for example, has characteristics

that are also found in other lake models such as

DYRESM-CAEDYM (Hamilton and Schladow

1997), MINLAKE (Riley and Stefan 1988), PROBE

(Blenckner et al. 2002) and BELAMO (Omlin et al.

2001; Mieleitner and Reichert 2006). We aim for a

more objective and in-depth analysis of a list of AEMs

using a similarity index (for details on the analysis, see

Online Resource 4 and for the data Online Resource 1,

Datasheet 4). One approach is to compare state

variables between models. We analysed 24 AEMs

for which sufficient information was provided, which

gave in total almost 550 unique state variables. The

minimum number of state variables found in a model

is 2 and the maximum is 118 (Fig. 4). It should be

noted that in some (especially the larger and general)

models, not all state variables are included simultane-

ously in each model application but rather subsets of

variables are being used. Additionally, some models

have state variables that can be duplicated by changing

their parameters (e.g. cohorts of a species). A Sørensen

similarity analysis (Sørensen 1948) using the state

variables of 24 models (Online Resource 4) shows that

models become more similar as their complexity

increases. This is an expected result as the chance of

similarities increases with increasing sampling size of

a given pool. However, overall the dissimilarity is

higher than the similarity since more than 80 % of the

models have a similarity index of less than 0.25.

Hence, many models benefit from predecessor models

even though they are still unique with individual

features not found in predecessor models. Most

overlap can be found in general state variables such

as phosphorus, ammonia and a generic group of

phytoplankton or zooplankton. Three groups of mod-

els can be distinguished: general-purpose models with

a relative high overlap, specialized models with low

overlap and intermediate models with an intermediate

level of overlap (see dendrogram in Online Resource

4). Interestingly, some models are significantly more

dissimilar than would be statistically expected based

on their number of state variables (red downward

arrow, Fig. 4). This is because these models capture

only a specific non-overlapping part of the aquatic

ecosystem (e.g. the Guam Atlantis Coral Reef Ecosys-

tem Model versus PCLake or CAEDYM). Other

models are more similar than would be expected based

on the number of state variables (upward green arrow);

these models simulate the aquatic ecosystem in a more

general way, such as CCHE and Mylake. A following

step could be to compare the models for their

mathematical process formulations, though this is

beyond the scope of this paper. An educated guess is

that this will reveal an even higher diversity, as endless

combinations can be made with the available process

formulations. For example, Tian (2006) counted 13

functions used to describe the effect of light forcing on

phytoplankton growth. Using these light functions in

combination with other functional relations, for

instance, temperature forcing (10 different relations),

zooplankton feeding (20 different relations), prey

feeding (15 different relations) and mortality (8

different relations), lead to hundreds of thousands of

combinations that give different results and are all ‘the

best’, depending on the aim of the model (Gao et al.

2000).

Exploiting diversity in AEMs

The inventory of the AEMs reveals a great diversity in

model approaches, formulations and applications.

Here, we ask whether and how this diversity could

be exploited.

Exploiting the diversity in disciplines

One of the options is to exploit the diversity in

contributing disciplines (see Fig. 2) and work in teams

consisting of not only aquatic ecologists, but also

social scientists, economists, climatologists, hydrolo-

gists, statisticians, mathematicians, etc. Working in an

interdisciplinary setting helps one to look beyond the

personal expert field and provides a more holistic view

upon both models and aquatic ecosystems (Hamilton

et al. 2015). Resulting interdisciplinary models have

an increased complexity with the disadvantage that

full understanding of the model by the individual

modeller is lost (Scholten et al. 2007; Robson 2014a).

The problem of inappropriate usage of complex

models can be overcome by again working in
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interdisciplinary teams. In this way, teammembers are

able to focus on their own area of expertise while the

team as a whole is able to understand the full model.

Statisticians and mathematicians can support interdis-

ciplinary teams with their knowledge on mathematical

formulations and their insight into model uncertainty.

Especially within the scientific niche, understanding

of the model is important since novel ideas need to be

tested and understood. Within the engineering niche,

there is less need to understand each model component

in detail. Indeed, many people drive a car safely

without having a detailed technical background on the

engine’s functionality.

Exploiting the diversity in spatial explicitness

of AEMs

Another way to exploit the diversity in AEMs is by

using the full width of spatial explicitness, which

varies from spatially homogenous (0D) and vertically
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Fig. 4 Similarity matrix based on the Sørensen similarity index

between the state variables considered in the models. Darker

colours mean higher similarity. Models with a green upward

arrow are significantly more similar to other models corrected for

themaximumnumber of state variables (p\ 0.05).Models with a

red downward arrow are significantly more dissimilar to other

models corrected for the number of state variables (p\ 0.05).

Grey bars on the right show the maximum number of state

variables within a model. For detailed information on methods

and results, see Online Resource 4. (Color figure online)
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or horizontally structured (1D) to fully 3D. Within

these dimensions, a modeller can additionally

choose between different structured grids (e.g.

Cartesian grid, regular grid and curvilinear grid)

and unstructured grids (e.g. finite elements). Fol-

lowing Occam’s razor, model complexity should be

minimized and only increased if this increases the

predictive performance of the model or its general-

ity/universality (please note that, while mentioned

here in the context of spatial explicitness, Occam’s

razor applies to all aspects of complexity in AEMs).

Therefore, to understand the basics of ecological

processes in a well-mixed system, one should use a

0D model as its dynamics are often easier to

understand. Additionally, 0D models are well suited

for checking the internal consistency of the model

functions. Spatially explicit models, however, are

more realistic, as they account for the spatial

heterogeneity of ecosystems, with the risk of getting

lost in complexity when explaining model beha-

viour. Nonetheless, some research questions cannot

be solved without taking spatial resolution into

account [e.g. population dynamics of fish in Jackson

et al. (2001), and spatial distribution of macrophytes

and algae in Janssen et al. (2014)]. Recent advances

facilitate the implementation of a model in different

spatial settings. For example, with Delft3D-Delwaq,

FABM and DATM, it is possible to switch between

a 0D, 1D, 2D to 3D implementation of, for instance,

PCLake (Van Gerven et al. 2015). However, these

frameworks are currently implemented without

accounting for feedbacks between ecology and

hydrodynamics. Interfaces such as OpenMI (Gre-

gersen et al. 2007) and FABM (Bruggeman and

Bolding 2014) allow for such coupling and are

designed to overcome the issues that emerge when

integrating ecology and hydrodynamics. Examples

of these issues are the different timescales and

spatial schematization for ecology and hydrodynam-

ics (e.g. Sachse et al. 2014) and feedbacks between

ecology and hydrodynamics, such as the effects of

water plants on the water flow (e.g. Berger and

Wells 2008).

Exploiting diversity by having a given AEM

implemented in multiple frameworks

Recent approaches such as DATM (Mooij et al. 2014),

FABM (Bruggeman and Bolding 2014) and the open

process library in Delft3D-Delwaq (Deltares 2014)

make it possible to exploit model implementations in

multiple frameworks without much overhead. There-

fore, a myriad of tools for model analysis (e.g.

sensitivity analysis, calibration, validation, uncer-

tainty analysis, and bifurcation analysis) become

easily available. The redundancy in tools among

frameworks insists modellers to stick to the framework

they are familiar with for most analyses, whereas the

complementarity in tools is tempting to switch to other

frameworks for alternative analyses (Van Gerven et al.

2015), including the switch between 0D and 3D. In

this way, the strengths of frameworks (including run-

time) can be exploited, and the underlying ecological

question can be approached from different

perspectives.

Exploiting diversity in dealing with uncertainty

in AEMs

As a simplification of nature, AEMs suffer from

uncertainty in their outcomes (Beck 1987; Chatfield

1995; Draper 1995). Sources of uncertainty are

structural uncertainties, i.e. incomplete or imperfect

process formulations, parameter uncertainty, uncer-

tainty in forcing functions and initial values, uncer-

tainty in validation data, and uncertainty due to the

numerical methods used. A full coverage of the topic

of uncertainty in AEMs is beyond the scope of this

paper. For more information on this topic, we refer to

the extensive literature available on this topic includ-

ing Beck (1987), Chatfield (2006) and Doherty (2015).

Below, we limit ourselves to presenting three different

views on how to deal with uncertainty in parameters.

First, a modeller measures the parameters’ magnitudes

directly. The parameter values are then purely based

on biologically, chemically or physically knowledge.

Due to errors in the measurements (experimental

uncertainty, Moffat 1988) and limited transferability

(e.g. between laboratory and field conditions), these a

priori parameter values have an uncertainty as well

(Draper 1995). By repeating the measurements over

and over, the experimental uncertainty can be reduced,

thereby minimizing the parameter uncertainty, but this

is often a costly measure (Chatfield 1995). A second

option is to estimate the parameters using calibration

data and statistics without the use of a priori knowl-

edge. This method leads in many cases to multiple

possible parameterizations of the model with equal fit
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(e.g. Beven 2006) and bears the risk of overfitting

(Hawkins 2004). For this reason, a modeller may

choose for the third option where the parameters are

estimated based on calibration data, statistics and a

priori knowledge (e.g. Janse et al. 2010). In this case, a

realistic range of parameter values is defined, prior to

the parameter estimation by statistics. Thereafter,

using Bayesian statistics, the parameters can be

estimated within the range of realism (Gelman et al.

2014).

Exploiting diversity by ensemble modelling

with AEMs

One way to deal with the uncertainty is using the

diversity of models in ensemble techniques [e.g.

Ramin et al. (2012) or Trolle et al. (2014), see Fig. 5

for an example from the latter study]. A variety of

ensemble techniques exists, each duplicating a certain

aspect of the modelling process. In multi-model

ensembles (MMEs), multiple models are applied to a

given problem. Single-model ensembles use different

model inputs (parameters, initial values, boundary

conditions) to exploit the model’s sensitivity (e.g.

Couture et al. 2014; Gal et al. 2014 or Nielsen et al.

2014). More ensemble techniques or combinations of

techniques exist including multi-scheme ensembling

(use of different numerical schemes) and hyper-

ensembling (use of multiple physical processes).

Ensemble modelling has become a standard in

meteorological forecasting (e.g. Molteni et al. 1996)

and climatic forecasting (e.g. IPCC 2014). There is an

increasing number of applications in hydrology and

hydrodynamics as well (e.g. Stepanenko et al. 2014;

Thiery et al. 2014). In aquatic ecosystem modelling,

the use of ensemble techniques is still rare (but see

examples in, for instance, Lenhart et al. 2010; Ramin

et al. 2012; Gal et al. 2014; Nielsen et al. 2014; Trolle

et al. 2014). However, the relevance of MME for

ecological modelling is large, as a strictly physically

based description is not practically feasible and a

unified, transferable set of equations is, therefore, not

available. Additionally, we foresee that ensemble

modelling will become common practice because of

(1) the emergence of active communities of aquatic

ecosystem modellers such as AEMON; (2) the

increase in freely available papers, data and model

code; and (3) the development of approaches such as

Delft3D-Delwaq, FABM and DATM. Hence, the

results of decades of individual model niche develop-

ment can now be better utilized (Mooij et al. 2010;

Trolle et al. 2012). The comparative list provided in

Online Resource 1 (Datasheet 4) is a useful starting

point of ensemble modelling with AEMs. When using

a model to provide forecasts, MME have two major

advantages over single-model approaches. First, the

ensemble mean may be a better predictor than any of

the sole ensemble members (Trolle et al. 2014). This is

especially true when an aggregated performance

measure over many diagnostics variables is considered

Fig. 5 Example of a multi-model ensemble (MME). The

shaded area shows the full width of predicting outcomes made

by different models, the black line shows the mean of all models

and the circles are the observations. Figure modified after Trolle

et al. (2014) where the authors show that the prediction by the

average model outcome is better than the prediction by

individual models
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(Hagedorn et al. 2005; Trolle et al. 2014). Second, the

ensemble spread can serve as a convenient measure of

predictive uncertainty if a spread–skill correlation

exists. AlthoughMMEs are attractive, their limitations

need to be recognized. First, despite ever increasing

computer power, they are time-consuming to put in

place. More importantly, MME-based estimates of

structural uncertainty can only be meaningful if the

models involved differ substantially. Another more

general limitation of ensembles is that the attainable

estimate of uncertainty is inevitably incomplete, for

example due to a limited number of suitable models

and the requirement of each model to have its own set

of—ideally standardized—parameters and initial val-

ues. Ensemble techniques therefore only quantify part

of the total uncertainty in predictions (Krzysztofowicz

1999). In the context of ecological process-based

modelling though, the integration of multiple models

should not be viewed solely as an approach to improve

our predictive devices, but also as an opportunity to

compare alternative ecological structures, to challenge

existing ecosystem conceptualizations, and to inte-

grate across different (and often conflicting) para-

digms (Ramin et al. 2012). Future research should also

focus on the refinement of the weighting schemes and

other performance standards to impartially synthesize

the predictions of different models. Several interesting

statistical post-processing methods presented in the

field of ensemble weather forecasting will greatly

benefit our attempts to develop weighting schemes

suitable for the synthesis of multiple ecosystem

models (Wilks 2002). Other outstanding challenges

involve the development of ground rules for the

features of the calibration and validation domain, the

inclusion of penalties for model complexity that will

allow building forecasts upon parsimonious models,

and performance assessment that does not exclusively

consider model endpoints but also examines the

plausibility of the underlying ecosystem structures,

i.e. biological rates, ecological processes or derived

quantities (Arhonditsis and Brett 2004).

Exploiting the diversity in fundamentally different

approaches in aquatic ecosystem modelling

Finally, we could exploit the diversity in more

fundamentally different model approaches, for exam-

ple statistical- versus process-based models. The

diversity in model approaches is the product of the

numerous choices that can be made during model

development, pursuing a certain trade-off between

effort, model simplicity, realism, process details,

boundary conditions, forcings and accuracy along

various dimensions such as time and space (e.g.

Weijerman et al. 2015). For example, minimal models

aim to understand the response curve of ecosystems to

disturbances, but they are generally too simple to

allow for upscaling and process quantification. Com-

plex models on the other hand can describe the cycling

of nutrients through many compartments of an

ecosystem as well as the flow of energy through the

system. Therefore, they often allow for quantitative

scenario evaluations, but their output is difficult to

interpret as it is demanding to decipher the numerous

interactions and feedback loops. More complexity also

can be introduced by individual-based and trait-based

models, which allow the inclusion of evolutionary

processes. Thus, a higher diversity of model

approaches permits addressing a higher number of

different purposes, provided that they are sufficiently

complementary. There is a great value in combining

different modelling approaches, as insights gained by

one model can be useful for the application of another,

and we benefit from the strengths of different model

types (Mooij et al. 2009). Combining modelling

approaches helps to develop an integrative view on

the functioning of aquatic systems and seems almost

essential for the adaptive management of the source

and sink functions of lake ecosystems, which require

integrated thinking and decision support.

Evolving diversity in AEMs

We have explored and exploited diversity in AEMs.

Before reflecting on possible future evolution of

model diversity, it is interesting first to look back

and see how the existing diversity came about.

A historical perspective on evolving diversity

in AEMs

The field of AEMs started with great expectations

when the first mainframe computers were installed at

universities in the 1960s (Lavington 1975). But

because of the adaptive nature of living systems,

making predictive AEMs proved to be more difficult

than predicting the trajectory of a rocket to the moon.
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This sparked the emergence of individual-based

models sensu lato, including dynamic energy budget

models (Kooijman 1993), structured population mod-

els (De Roos et al. 1992) and individual-based models

sensu stricto (Mooij and Boersma 1996), that zoom in

on a particular (group of) species in the ecosystem. In

an opposite direction, minimal dynamical models of

ecosystems zoomed out to detect dominant nonlinear-

ities in ecosystem responses to external forcing

(Scheffer et al. 2001). Renewed interest in large

ecosystem models occurred in the past decades, not

the least as a result of the increased and distributed

computational power, but this time with the tendency

to link the models with individual-based and trait-

based approaches (DeAngelis and Mooij 2005) and

compare their behaviour with minimal dynamical

models (Mooij et al. 2009). In the past, region-specific

questions have led to region-specific models; how-

ever, as a result of current globalization, the need for

widely applicable models and models covering

regional or continental aspects is rapidly increasing.

The growing recognition of the importance anthro-

pogenic stressors on ecosystems and the services

provided by ecosystems asks for coupling of ecolog-

ical models with socio-economics models (e.g. Down-

ing et al. 2014). This can be realized by using output of

one model as input for the other model, or run-time

exchange of input and output between such models.

The latter method is more complicated and only

becomes necessary when there are strong feedbacks

between ecology and socio-economics.

Arguments for reducing diversity

There are valid arguments why aquatic ecology as a

whole could benefit from streamlining the diversity in

AEMs. First, some formulations have been shown to be

both less accurate and more complex than alternatives

(Tian 2006). Second, some models are developed to

answer one specific question and thus lose their

functionality once this question has been addressed. It

is likely that this kind of models has a high turnover

rate, but suchmodels could also be incorporated in large

models as the results prove to be relevant. Finally, the

presence of pseudo-diversity is an argument to reduce

the number of models. For example, in climate studies,

it has been shown that the performance of ensemble

models significantly improved when pseudo-diversity

was reduced (Knutti et al. 2013). Ideally, groups that

work in parallel on similar models should have the

incentives to join efforts, but these incentives are often

not in place. Also at the level of the individual

scientists, there seem to be few, if any, incentives to

give up one’s own model, whereas there are many

incentives to maintain it or even start yet another one.

Only when the incentives that lead to fragmentation are

overcome, or are outweighed by incentives to join

forces, can we expect a healthy consolidation of the

field to take place. Frameworks such as Delft3D-

Delwaq (Deltares 2014), FABM (Bruggeman and

Bolding 2014) and DATM (Mooij et al. 2014) facilitate

this process, but also these frameworks have the risk to

be duplicated, leading to yet another layer of fragmen-

tation. The turnover rate of AEMs is hard to measure

since publications on dropped models are rare, if they

even exist. At the same time, the absence of publica-

tions on a specific model does not necessarily mean that

a model became unused, as engineers, for example,

might use the specific model on a daily basis without

publishing the results. Furthermore, unlike extinct

species that reduce biodiversity, ‘dead’ models can

become ‘alive’ when a need for their existence emerges,

thereby contributing again to model diversity.

Arguments for enlarging diversity

Because the field of aquatic ecosystem modelling can

appear quite fragmented, arguments for enlarging

diversity in AEMs are easily overlooked. Neverthe-

less, there should always be room for good ideas and

new avenues. An interesting example is provided by

minimal dynamical models. When these became

prominent in the shallow lake literature about 25 years

ago, they were met with considerable reservation and

hardly perceived as a step forward. Nowadays, their

ability to illustrate and communicate essential nonlin-

earity in the response of ecosystem (and many other

dynamical systems) is broadly recognized (Scheffer

et al. 2001). Another emerging approach with many

applications in the aquatic domain is Dynamic Energy

Budgets (DEB) (Kooijman 1993). The scope of

current DEB models, however, is too limited to be

qualified as ecosystem models as defined in this study.

Arguments for conserving diversity

With the first generation of aquatic ecosystem mod-

ellers about to retire, there can be serious concern about
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a loss of useful models and approaches, requiring active

conservation effort by the community at large. Proper

implementation of conservation schemes will help to

prevent the proverbial ‘reinvention of the wheel’

(Mooij et al. 2010). Additionally, it can help future

model developers to anticipate what models and

formulations worked well and which did not. Obvi-

ously, this learning process is hampered at the lack of

documentation of failures in the scientific literature.

Conserving diversity would thus have a great educa-

tional value and would help understand the ‘genealogy’

of the existing models. Conservation of model diversity

is important for science as well, as science builds on

repetition which only can be complied with when code

is conserved. However, model diversity conservation

has to overcome ‘code rot’, which is the deterioration of

software as a result of the ever evolving modelling

environment, making the software invalid or unusable

(Scherlis 1996). To prevent code rot, the code should be

maintained. Another option is to conserve models in

their purest mathematical form (e.g. like in the concept

behind DATM, Mooij et al. 2010).

How to facilitate evolving diversity

One would like to have tools available and mechanisms

in place that would allow diversity to evolve through a

‘natural selection’ of models. Natural selection is an

emergent property of a system in which there is

variation among agents; this variation is transferred to

the offspring of the agents and has an impact on the

survival of the agents. We have shown that there is

ample diversity among AEMs, and there seems to be a

healthy cross-fertilization of ideas leading to continued

development of new versions andmodels.What may be

hampering ‘natural selection’ among AEMs, however,

are standardized methods to compare model ‘fitness’

within their niche and given the research question they

address. Here, we point specifically to the research

question since models might have a different purpose,

and it only makes sense to compare the fitness of those

models that are able to answer the same research

question. To enhance selection and ‘gene transfer’, easy

model accessibility is necessary in the first place. Easy

accessibility not only includes freely available model

software but also low time costs of, for instance,

learning new modelling code or approaches. Addition-

ally, data availability is very important for the improve-

ment of models (Hipsey et al. 2015). As long as models

are inaccessible, due to, for example, licence restric-

tions or inappropriate manuals, modellers will most

likely choose the models in use by their colleagues (see

Online Resource 2). These easily accessible models

may not be the best suitable to answer their questions.

Secondly, standard objective assessment criteria to

calibrate and validate models are important (Refsgaard

et al. 2005; Robson 2014b). These criteria are different

for each modelling niche, as models that are suitable,

for example, for forecasting of algal blooms require

other criteria than models suitable for biodiversity

assessments. It also implies providing a freely acces-

sible set of data used as calibration or validation data

(meteorology, hydrology, hydrodynamics, nutrient

fluxes, etc.) of the models to be benchmarked. The

application of the models to these common test data

enables a direct comparison without interfering effects

from differences in basin morphometry, hydrology,

meteorology, and so on. The main idea behind this

benchmarking is not to classify models into ‘good’ and

‘bad’ ones, but instead to characterize the dynamic

behaviour and specific abilities of the separate models.

Finally, we would like to point to the importance of the

conservation and maintenance of expertise and expe-

rience for model evolution. Currently, project life

cycles are generally short, and while mobility of people

can help to spreadmodels, the samemobility could lead

to a local loss of expertise (Herrera et al. 2010; Parise

et al. 2012).

Discussion

How can biodiversity research help us to interpret

model diversity?

One could see the myriad of model purposes as niches

that shape model diversity. Like biodiversity, model

diversity can be organized in taxonomic structures to

classify models. Using Wikipedia as a reference, such a

taxonomic studyhas beendone already forprogramming

languages and showed a phylogenetic tree with new

programming languages emerging from different ele-

ments of earlier programming languages (Valverde and

Solé 2015).A similar study forAEMs is intriguing, but is

beyond this study.Our analysis revealed a large diversity

in themodels.Weargue that to fully exploit the niche, the

tools for analysis provided in eachmodelling framework

should be used. If we divide the AEMs in specialists or
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generalists, the majority of the AEMs seem to be

specialists that address the research question that led to

their development but with little application beyond.

This can be attributed to the fact that models are often

locked within frameworks which obstruct communica-

tion and cross-fertilization between the models (Mooij

et al. 2014). For the same reason, we could question

whether there is enough competitionbetween themodels

to enable survival of the fittest and thus competitive

exclusion. At present, most models seem to have the

fingerprints of the resource group it is developed in, as if

they were species that evolved in their island-specific

supported niche. This has the disadvantage of reinvent-

ing the wheel, but surely has its advantage as well since

the independently evolved models can be used for

comparison as in ensemble modelling.

Recommendations

Our analysis of exploring, exploiting and evolving

diversity in AEMs leads us to three types of recom-

mendations related to (1) availability, (2) standard-

ization and (3) coupling of AEMs.

Availability of AEMs

With respect to the availability of AEMs, it is important

to continue the current trend of open-source policies for

AEM models, tools for analysis and data. This will

increase the transparency of model structure, assump-

tions and approaches. Besides that, there is an urgent

need for a public overview of existing AEMs. This

could be aWikipedia list, with links to relevant (online)

documentation or similar initiatives. Such a list could

be complemented with an overview of the forces and

niches that created the existing diversity in AEMs.

Once there is an overview of the niches inwhichmodels

are designed, the suitability of models for other

applications is better assessed. Documentation of the

available AEMs will create awareness of the full width

of approaches in AEMs to avoid tunnel vision. We

should also actively preserve AEMs to learn from the

past and thereby avoid reinventing the wheel but also to

identify and prevent pseudo-diversity in AEMs.

Standardization of AEM practices

We recommend developing standardization in the

documentation of AEMs [comparable with, e.g. ODD

for IBMs, Grimm et al. (2006)], terminology to

categorize AEMs and the methods to analyse AEMs.

Standardization of documentation and terminology is

desirable for the communication on the different

available models. Standardization of methods for

parametrization, comparison, calibration, testing,

structuring, conversion and interpolation in AEMs

will lead to a common practice in model analysis.

Linking AEMs

In our analysis, we compared models by their state

variables, while additional diversity is hidden in the

process formulations. Here, we recommend fulfilling

the next step by comparing models by their process

formulations. Currently, this step is a time-consuming

and difficult task as a result of lack in the availability

of model definitions. Perhaps this step will be possible

in the future due to the emerging linking approaches

such as DATM. And linking has more benefits. We

advocate linking AEMs with models from other

disciplines to answer questions that require a holistic

approach. We recommend running AEMs in more

than one spatial setting to gain more insight into the

effects within the spatial context and suggest running a

given AEM in multiple frameworks to use the full set

of tools for analysis and advice of the user community.

Finally, we recommend ensemble modelling with

AEMs in order to use the best out of multiple models.

For example, statistical- and process-based AEMs

should be used side by side because they have

complementary strengths.

We anticipate that increasing model availability,

standardization of model documentation, and various

forms of linking will lead to an evolving diversity of

AEMs in which the better performing models out-

compete the poorer performing models. Given the

large number of model niches, however, there will

always remain a great diversity in AEMs.

Perspectives

We can only speculate where the field of aquatic

ecosystem modelling will be heading in the coming

five to 10 years. We expect that many new develop-

ments will be triggered and enabled by general trends

in science, technology and society. Here, we list 10 of

these possible trends. (1) We expect that wikis (e.g.

Wikipedia), where users can either retrieve information

528 Aquat Ecol (2015) 49:513–548

123



or contribute information through standardized web

interfaces, will gain in importance for the documenta-

tion and distribution of AEMs. While we recognize the

inherent lack of quality control, we highly value the

ease of access, the community effort and dynamic

nature of this approach (the name ‘wiki’ is derived from

the Hawaiian word for ‘quick’). (2) We recognize

initiatives to develop e-infrastructures for the imple-

mentation of AEMs and other environmental models

where users of different levels of experience share easy

and secure access to models and data according to their

needs. (3) We envision that current trends in the

mandatory storage of scientific data in repositories will

be extended to model code. (4) We envision that online

databases of model parameters will be developed and

become an important resource for the development and

improvement of AEMs. (5) We see a change from the

way consultancy companies earn money with AEMs.

Formerly, their businessmodel was based on copyrights

of model code. Now, we see a switch to a business

model emerging that is based on expertise in applying

open-source models. (6) We hope for a further integra-

tion of the development, analysis and application of

AEMs in fundamental research and applied science. It

will be a challenge to develop models of intermediate

complexity that are simple enough to be thoroughly

analysed, yet complex enough to be applicable in real-

life cases. (7) We hope for a better coverage of the

mutual interaction of ecosystem dynamics and biodi-

versity in AEMs. (8) We expect that the domain of

model application (e.g. type of water, climate zone and

stress factors) of AEMs will increase. In the end, this

will allow for global analysis of aquatic ecosystems

exposed to multiple stressors. (9) We envision the

implementation of AEMs in apps that run in a local

context (e.g. using GPS information) on a smartphone

or tablet computer. (10) Finally, we expect that various

forms of ensemble modelling will gain importance.

Through a comparative evaluation of model perfor-

mance, ensemble modelling can contribute to a ‘natural

selection’ of AEMs within their niches that are defined

by questions from society and science.

Text Box 1 Glossary of terms related to aquatic ecosystem

modelling. This glossary can also be found in database format

in Online Resource 1, Datasheet 1. For each term, an acronym

and a description, followed by, in so far known to us, a

Wikipedia page, a homepage or other relevant web pages and

one or more key publications is given, using the following

style: Term (Acronym): Definition of term (Wikipedia | Web

page | Publication)

ACSL (Advanced Continuous Simulation Language): A computer language with user interface and analysis tools for the

implementation of sets of ordinary differential equations. (http://en.wikipedia.org/wiki/Advanced_Continuous_Simulation_

Language | http://www.acslx.com |).

ADCIRC (ADvanced CIRCulation Model): A model for storm surge, flooding and larvae drift. (| http://adcirc.org |).

AED in FABM (Aquatic EcoDynamics modelling library): A configurable library of biogeochemical model components

including oxygen, nutrients, phytoplankton, zooplankton and sediment implemented in FABM. (| http://aed.see.uwa.edu.au/

research/models/AED, http://sf.net/p/fabm | Bruce et al. 2014).

AEM (Aquatic Ecosystem Model): A formal procedure by which the impact of external or internal forcing on aquatic ecosystem

states can be estimated. In sometimes used as a synonym for water quality model. (http://en.wikipedia.org/wiki/Aquatic_

ecosystem, http://en.wikipedia.org/wiki/Ecosystem_model, http://en.wikipedia.org/wiki/Water_quality_modelling | | Mooij

et al. 2010).

AEMON (Aquatic Ecosystem MOdelling Network): A grass roots network of aquatic ecosystem modellers that aims for

sharing knowledge, accelerating progress and improving models. (| https://sites.google.com/site/aquaticmodelling |).

Agent-based model (): A modelling format used in individual-based models. (http://en.wikipedia.org/wiki/Agent-based_model | |

DeAngelis and Mooij 2005).

Algorithmic uncertainty (): A misestimate of the data by the model’s output as result of errors made by the numerical integration

method that is used. (http://en.wikipedia.org/wiki/Uncertainty_quantification | |).

AQUASIM (): A modelling framework for the implementation of AEMs in pre-defined compartment types. (| http://www.eawag.

ch/en/department/siam/software | Reichert 1994).

AQUATOX (): An AEM that predicts the fate of various pollutants. (| http://www.epa.gov/athens/wwqtsc/html/aquatox.html |

Park et al. 2008).

ASM2d (Activated Sludge Model no. 2D): A model for biological phosphorus removal with simultaneous nitrification–

denitrification in activated sludge systems. (| https://build.openmodelica.org/Documentation/WasteWater.ASM2d.html | Henze

et al. 1999).
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Text Box 1 continued

Aster2000 (modified ASTERionella formosa model): An AEM for reservoirs. (| | Thébault 2004).

ATLANTIS (): A flexible, modular modelling framework for developing AEMs that aims to consider all aspects of a marine

ecosystem, including biophysical, economic and social aspects. (| http://atlantis.cmar.csiro.au | Fulton et al. 2007, 2011).

BaltWeb (): An application of the model LakeWeb to the Baltic Sea. (| | Håkanson and Gyllenhammar 2005).

BELAMO in AQUASIM (Biogeochemical Ecological LAke MOdel in AQUASIM): A biogeochemical and ecological lake

model implemented in Aquasim which allows flexible modifications of the differential equations. (| | Reichert 1994; Omlin et al.

2001).

BELAMO in R (Biogeochemical Ecological LAke MOdel in R): A biogeochemical and ecological lake model implemented in

R which allows flexible modifications of the differential equations. (| | Reichert 1994; Omlin et al. 2001).

Bifurcation analysis (): A mathematical analysis technique that aims for identifying qualitative shift in model behaviour, e.g.

stable versus unstable, in response to internal or external forcing to the model. Extensively used in theoretical ecology, but

much less so in the analysis of AEMs, despite its potential to reveal general response curves of the model such as those depicted

in Fig. 1. (http://en.wikipedia.org/wiki/Catastrophe_theory | | Scheffer et al. 2001).

Biogeochemical model (): A model of the chemical, physical, geological and biological processes in an ecosystem. (http://en.

wikipedia.org/wiki/Biogeochemistry | |).

BLOOM II (): A phytoplankton community model that uses linear programming, an optimization technique, to calculate the

maximum biomass that can be obtained given the available amount of nutrients and constraints on growth and mortality. (| | Los

1991).

BNN-EQR (Bayesian Belief Network model for Ecological Quality Ratio): A statistical model relating Ecological Quality

Ratio as defined in the Water Framework Directive in lakes and rivers to abiotic and management factors. (| | Gobeyn 2012).

Box model (): A representation of a complex system in the form of boxes or reservoirs linked by fluxes. (http://en.wikipedia.org/

wiki/Climate_model#Box_models | |).

BRNS (Biogeochemical Reaction Network Simulator): A simulation environment in which transport processes are interfaced

with relevant biogeochemical reactions for sediment diagenesis. (| http://www.geo.uu.nl/Research/Geochemistry/RTM_web/

project1.htm | Aguilera et al. 2005).

BROM (Bottom RedOx Model): A water–sediment column model of elemental cycles, redox chemistry and plankton dynamics.

(| | Yakushev et al. 2014).

C (): A general-purpose procedural programming language. (http://en.wikipedia.org/wiki/C_(programming_language) | |).

C11 (): A general-purpose object-oriented programming language. (http://en.wikipedia.org/wiki/C%2B%2B | |).

CAEDYM (Computational Aquatic Ecosystem DYnamics Model): A complex ecological and biogeochemical model that can

be coupled with the hydrodynamic drivers DYRESM or ELCOM. (| http://www.cwr.uwa.edu.au/software1/models1.php?mdid=

3 | Hipsey et al. 2006).

Calibration (): - (| | See Model calibration).

Cartesian grid (): - (| | See Cubic grid).

Catastrophic shift (): - (| | See Regime shift).

CCHE1D-WQ, CCHE2D-WQ, CCHE3D-WQ (Center for Computational Hydroscience and Engineering 1D/2D/3D Water
Quality model): A model that simulates water quality processes in river channels, streams, lakes and coastal waters in a 1D, 2D

or 3D setting. (| http://www.ncche.olemiss.edu/research/basic/water |).

CE-QUAL-W2 (Corps of Engineers water QUALity model Width averaged 2d): A two-dimensional longitudinal/vertical

hydrodynamic and water quality model for reservoirs/lakes, rivers and estuaries that includes full eutrophication modelling state

variables including sediment diagenesis, algae, zooplankton, and macrophytes. (| http://www.ce.pdx.edu/w2, http://www.

cequalw2wiki.com/Main_Page | Cole and Wells 2003).

Charisma (): An individual-based macrophyte community model. (| http://www.projectenaew.wur.nl/charisma | Van Nes et al.

2002b).

CLI (Command Line Interface): A way of controlling a computer or program by entering text messages at a command line. The

computer or program responds with text but also with graphical output. (http://en.wikipedia.org/wiki/Command-line_interface |

|).

COASTMAB (COASTal MAss Balance model): A dynamic model for coastal water quality based on LakeMab. (| | Håkanson

and Eklund 2007).

Code rot (): A deterioration of software as a result of the ever evolving environment, making the software invalid or unusable.

(http://en.wikipedia.org/wiki/Software_rot | | Scherlis 1996).
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Text Box 1 continued

Code verification (): A substantiation that a model code is in some sense a true representation of a conceptual model within

certain specified limits or ranges of application and corresponding ranges of accuracy. (| | Refsgaard and Henriksen 2004).

COHERENS (COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas): A hydrodynamic driver available

in FABM. (| http://odnature.naturalsciences.be/coherens/about |).

Community model (): A model of closely interacting species within an ecosystem. (http://en.wikipedia.org/wiki/Community_%

28ecology%29 | |).

Compartment model (): - (| | See Multi-compartment model).

Competition model (): A model of competing species within an ecosystem. (http://en.wikipedia.org/wiki/Competition | |).

Complex dynamic model (): A dynamic model with many components. One way to further define this concept would be as those

dynamical models that are too complex to be analysed with analytical techniques. See also Minimal dynamic model. (| http://en.

wikipedia.org/wiki/Mathematical_model#Complexity |).

Conceptual model (): A description of reality in terms of verbal descriptions, equations, governing relationships or natural laws

that purport to describe reality. (http://en.wikipedia.org/wiki/Conceptual_model | | Refsgaard and Henriksen 2004).

Consumer-resource model (): A model of two or more species that interact with each other through predation, competition,

parasitism, mutualism, etc. (http://en.wikipedia.org/wiki/Consumer-resource_systems | |).

Cubic grid (): A n-dimensional regular grid consisting of unit squares or cubes. (http://en.wikipedia.org/wiki/Regular_grid | |).

Curvilinear grid (): A n-dimensional regular grid with cuboidal cell structure. (http://en.wikipedia.org/wiki/Regular_grid | |).

DATM (Database Approach to Modelling): An approach in which a model is specified in mathematical terms in a database. To

create a running instance of a model, framework-specific code is generated with automated code generators. (| | Mooij et al.

2014).

DEB (Dynamic Energy Budgets): An approach that captures the elementary energy allocation within an organism and the

consequences thereof for growth and reproduction. (http://en.wikipedia.org/wiki/Dynamic_energy_budget | http://www.bio.vu.

nl/thb/deb | Kooijman 1993; Kooijman and Lika 2014).

Delft3D (): A modelling suite for 1D, 2D and 3D hydrologic, hydrodynamic, hydraulic and water quality models. (| http://www.

deltaressystems.com/hydro/product/621497/delft3d-suite, http://oss.deltares.nl/web/delft3d |).

Delft3D-DELWAQ (): An interface between various components of the Delft3D suite, in particular between hydrodynamic,

water quality and sediment modules. (| http://oss.deltares.nl/web/delft3d/delwaq |).

Delft3D-Flexible Mesh (): A 1D/2D/3D open-source modelling suite to investigate hydrology, hydrodynamics, sediment

transport and morphology, water quality for fluvial, estuarine, coastal, rural and urban environments. (| http://oss.deltares.nl/

web/delft3dfm |).

Delft3D-FLOW (): A 2D/3D hydrodynamic program of the Delft3D 4 Suite to simulate non-steady flows in relatively shallow

water. It incorporates the effects of tides, winds, air pressure, density differences, waves, turbulence and drying and flooding. (|

http://oss.deltares.nl/web/delft3d/manuals |).

Delft3D-MOR (): A component of the Delft3D 4 Suite that computes sediment transport and morphological changes for an

arbitrary number of cohesive and non-cohesive fractions. Both currents and waves act as driving forces, and a wide variety of

transport formulae have been incorporated. (| http://oss.deltares.nl/web/delft3d/manuals |).

Delft3D-PART (): A component of the Delft3D 4 Suite that estimates the dynamic spatial concentration distribution of individual

particles by following their tracks in time. The waste substances may be conservative or subject to a process of simple, first-

order decay; a typical application is oil spill modelling. (| http://oss.deltares.nl/web/delft3d/manuals |).

Delft3D-SED (): A subset of the DELWAQ process library for short- or medium-term—days, weeks, months—cohesive and non-

cohesive sediment transport. (| http://oss.deltares.nl/web/delft3d/manuals |).

Delft3D-WAQ (incl GEM/BLOOM/ECO): A component of the Delft3D 4 Suite that simulates the far and mid-field water and

sediment quality due to a variety of transport and water quality processes. To accommodate these, it includes several advection

diffusion solvers and an extensive library of process formulations for user-selected substances. (| http://oss.deltares.nl/web/

delft3d/manuals |).

Delft3D-WAVE (): A component of the Delft3D 4 Suite that computes the non-steady propagation of short-crested waves over an

uneven bottom, considering wind action, energy dissipation due to bottom friction, wave breaking, refraction, shoaling and

directional spreading. The programme is based on the spectral model SWAN. (| http://oss.deltares.nl/web/delft3d/manuals |).

Delphi (): An object-oriented programming language based on pascal. (http://en.wikipedia.org/wiki/Delphi_(programming_

language) | |).

Delta Shell (): A modelling framework for developing and analysing environmental models to simulate water, soil and the

subsurface processes. (| http://oss.deltares.nl/web/delta-shell |).
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Text Box 1 continued

deSolve (R package): A set of general solvers for initial value problems of Ordinary Differential Equations, Partial Differential

Equations, Differential Algebraic Equations and Delay Differential Equations. (| https://cran.r-project.org/web/packages/

deSolve | Soetaert et al. 2010).

DIECAST (DIEtrich Center for Air Sea Technology): A hydrodynamic model. (| http://efdl.as.ntu.edu.tw/research/diecast |).

Domain of applicability of conceptual model (): A prescribed set of conditions for which the conceptual model has been tested,

i.e. compared with reality to the extent possible and judged suitable for use by model confirmation. (| | Refsgaard and Henriksen

2004).

Domain of applicability of model (): A prescribed set of conditions for which the site-specific model has been tested, i.e.

compared with reality to the extent possible and judged suitable for use by model validation. (| | Refsgaard and Henriksen

2004).

Domain of applicability of model code (): A prescribed set of conditions for which the model code has been tested, i.e. compared

with analytical solutions, other model codes or similar to the extent possible and judged suitable for use by code verification. (| |

Refsgaard and Henriksen 2004).

DUFLOW (DUtch FLOW model): A modelling suite for the simulation of non-stationary 1D hydrodynamics and water quality

processes. (| http://www.mx-groep.nl/duflow |).

DUPROL (DUtch PROgramming Language): A computer language for the implementation of the water quality processes in

DUFLOW. (| http://www.mx-groep.nl/duflow |).

Dynamic model (): A mathematical model that captures the development of the system through time as opposed to a static model.

(http://en.wikipedia.org/wiki/Mathematical_model | |).

DYRESM (DYnamic REservoir Simulation Model): A 1D hydrodynamic model for predicting the vertical distribution of

temperature, salinity and density in lakes and reservoirs. DYRESM coupled with CAEDYM. (| http://www.cwr.uwa.edu.au/

software1/models1.php?mdid=2 | Hamilton and Schladow 1997).

Ecopath with Ecosim (): A software package for balancing food web interactions, calculating network characteristics and

assessing the impact of fishing on the food web. (http://en.wikipedia.org/wiki/Ecopath | http://www.ecopath.org | Christensen

and Pauly 1992).

Ecosystem model (): An abstract, usually mathematical, model of an ecological system which is developed and analysed to

understand and predict the dynamics of the real system. (http://en.wikipedia.org/wiki/Ecosystem_model | |).

ECOWASP (ECOsystemmodel for WAdden Sea Project): A dynamic model for the integrated simulation of biological,

chemical, and physical processes in shallow tidal water systems. (| | Brinkman et al. 2001).

EEMOD_DNSMOD (Detailed Nitrogen Sediment MODel inside of an Essential Ecological MODel): An aquatic nitrogen

cycle model including a layered sediment compartment. (| http://sourceforge.net/projects/eemoddnsmod |).

EFDC (Environmental Fluid Dynamics Code): A hydrodynamic model that can be used to simulate aquatic systems in one,

two, or three dimensions and that can be coupled with WASP. (http://en.wikipedia.org/wiki/EFDC_Explorer | http://www.epa.

gov/athens/wwqtsc/html/efdc.html | Hamrick and Wu 1997; Wu et al. 1997).

ELCOM (Estuary, Lake and Coastal Ocean Model): A 3D finite-difference baroclinic hydrodynamic model to simulate

stratified waters bodies with environmental forcing. ELCOM can be coupled with CAEDYM. (| http://www.cwr.uwa.edu.au/

software1/models1.php?mdid=5 | Robson and Hamilton 2004).

ELISE (): A software interface to couple results of a hydrodynamic model with biological equations in a box-model

representation. (| | Ménesguen 1991).

EMS (Environmental Modelling Suite): A modelling suite consisting of a hydrodynamic model SHOC, a sediment dynamic

model MECOSED and an ecological/biogeochemical model. EMS is optimized for coastal systems. (| http://www.emg.cmar.

csiro.au/www/en/emg/software/EMS.html | Skerratt et al. 2013).

Ensemble technique (): A forecasting technique where certain aspects of modelling processes are duplicated. Examples of

ensemble techniques are the use of multiple models, multiple model inputs or multiple integration schemes. (http://en.

wikipedia.org/wiki/Ensemble_forecasting | |).

Environmental niche model (): A model that predicts the distribution of a species in its geographic space on the basis of the

distribution of its environmental requirements. (http://en.wikipedia.org/wiki/Environmental_niche_modelling | |).

ERGOM (Ecological ReGional Ocean Model): A semi complex NPZD type of model with cyanobacteria. (| http://www.ergom.

net | Neumann 2000; Neumann et al. 2002).

ERSEM (European Regional Seas Ecosystem Model): A marine AEM. (| http://www.meece.eu/library/ersem.html | Baretta

et al. 1995).

ESMF (Earth System Modelling Framework): An interface between various hydrodynamic and water quality process

formulations. (| http://www.earthsystemmodeling.org/about_us, http://sourceforge.net/p/esmf/esmf/ci/master/tree |).
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Text Box 1 continued

Euler integration (): A simple way to integrate ordinary differential equations that bears similarity with difference equations but

is fundamentally different because it aims for describing a continuous process. (http://en.wikipedia.org/wiki/Euler_method | |).

eWater Source (): A model that is designed to simulate all aspects of water resource systems to support integrated planning,

operations and governance from urban, catchment to river basin scales including human and ecological influences. (http://en.

wikipedia.org/wiki/EWater | http://ewater.com.au/products/ewater-source, http://www.toolkit.net.au/tools/Source%20%

28public%20version%29 | Argent et al. 2009).

Experimental uncertainty (): A measure of errors in observational data. (http://en.wikipedia.org/wiki/Uncertainty_quantification

| |).

FABM (Framework for Aquatic Biogeochemical Models): An interface between various hydrodynamic and water quality

process formulations. (| http://fabm.sourceforge.net |).

FEMME (Flexible Environment for Mathematically Modelling the Environment): A modelling framework for the

implementation of AEMs. (| | Soetaert et al. 2002).

Finite Element (): A numerical technique to solve boundary problems by subdividing the domain in simpler subdomains—finite

elements—in order to approximate the exact solution. (http://en.wikipedia.org/wiki/Finite_element_method | | Hrennikoff

1941).

FLAKE (Freshwater LAKE model): A freshwater lake model for predicting vertical temperature distribution and mixing

conditions. (| http://www.flake.igb-berlin.de | Mironov 2008).

Flexible Mesh (): An unstructured grid in 1D, 2D or 3D consisting of different geometric shapes within one mesh. (| http://oss.

deltares.nl/web/delft3dfm |).

FME (Flexible Modelling Environment, R implementation of FEMME): A flexible modelling framework for inverse

modelling, sensitivity, identifiability, Monte Carlo analysis. (| http://cran.r-project.org/package=FME | Soetaert and Petzoldt

2010).

Foodweb model (): A model of species within an ecosystem that are linked by trophic interactions. (http://en.wikipedia.org/wiki/

Food_web | |).

FORTRAN (FORmula TRANslation system): A general-purpose procedural programming language with object-oriented

extensions. (http://en.wikipedia.org/wiki/Fortran | |).

Framework (): (| | See Modelling framework).

Functional programming (): A programming paradigm that treats computation as the evaluation of mathematical functions.

Functional programming is focused on describing what should be calculated rather than how it should be calculated. (http://en.

wikipedia.org/wiki/Functional_programming | |).

FVCOM (Finite Volume Community Ocean Model): An unstructured grid, finite-volume, 3D primitive equation, turbulent

closure coastal ocean model. (http://en.wikipedia.org/wiki/Finite_Volume_Community_Ocean_Model | | Chen et al. 2006).

GEMSS (Generalized Environmental Modeling System for Surfacewaters): An integrated system of 3D hydrodynamic and

transport modules embedded in a geographic information and environmental data system. (http://en.wikipedia.org/wiki/

Generalized_Environmental_Modeling_System_for_Surfacewaters | http://www.gemss.com |).

Generalized Lotka-Volterra model (): A multidimensional implementation of the Lotka-Volterra competition and predation

equations, typically with linear interaction terms. (http://en.wikipedia.org/wiki/Generalized_Lotka%E2%80%93Volterra_

equation | |).

GETM (General Estuarine Transport Model): A structured grid 3D hydrodynamic model that can be coupled with FABM. (|

http://www.getm.eu |).

GLEON (Global Lake Ecological Observatory Network): A transdisciplinary network that aims at sharing and interpreting

high-resolution sensor data from different lakes worldwide. (| http://www.gleon.org |).

GLM (General Lake Model): A 1D Lake and Wetland hydrodynamic model that simulates the balance of water, salt and heat,

including vertical stratification. (| http://aed.see.uwa.edu.au/research/models/GLM | Hipsey et al. 2013).

GLOBIO-AQUATIC (): An empirically based model of biodiversity intactness and species richness as a function of main abiotic

drivers. (| http://www.globio.info | Janse et al. 2014, 2015).

GLUES (Global Land Use and technological Evolution Simulator): A model used for land-use and socio-technological

evolution simulations. (| http://sf.net/p/glues |Lemmen et al. 2011; Lemmen and Wirtz 2014).

GOTM (General Ocean Turbulence Model): A 1D water column model with focus on vertical mixing that can be coupled with

FABM. (| http://www.gotm.net |).

GPL (GNU General Public Licence): An open-source software licence. (http://en.wikipedia.org/wiki/GNU_General_Public_

License | http://www.gnu.org/licenses |).
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Text Box 1 continued

GRIND for MATLAB (): A modelling framework based on MATLAB. (| http://www.sparcs-center.org/grind |).

Guam Atlantis Coral Reef Ecosystem Model (): An evaluation and management strategy tool used particularly for simulating

management policies and methods for coral reef conservation and assessment. (| http://www.pifsc.noaa.gov/cred/guam_

atlantis_ecosystem_model.php |).

GUI (Graphical User Interface): A communication tool with graphical icons to enable interaction between the electronic device

and the user. (http://en.wikipedia.org/wiki/Graphical_user_interface | |).

HABITAT (): A spatial analysis tool to analyse the availability and quality of habitats for individual or groups of species. (|

https://publicwiki.deltares.nl/display/HBTHOME/Home | Haasnoot and Van de Wolfshaar 2009).

HBV (Hydrologiska Byråns Vattenbalansavdelning model): A catchment hydrological model simulating river discharges and

solute transport in the rivers and catchments. (http://en.wikipedia.org/wiki/HBV_hydrology_model | http://www.smhi.se/

forskning/forskningsomraden/hydrologi/hbv-1.1566 | Bergström 1976).

HEC-RAS (Hydrologic Engineering Center River Analysis System): A hydraulic model for engineering of pipes and canals

and rivers, which has also modules for basic water quality. (| http://en.wikipedia.org/wiki/HEC-RAS, http://www.hec.usace.

army.mil/software/hec-ras | Brunner 2001).

Hydraulic model (): A model describing fluid mechanics including power generation and distribution. (http://en.wikipedia.org/

wiki/Hydraulics | |).

Hydrodynamic model (): A model describing motion of water. (http://en.wikipedia.org/wiki/Fluid_dynamics | |).

Hydrological model (): A model describing the water cycle. (http://en.wikipedia.org/wiki/Hydrology, http://en.wikipedia.org/

wiki/Hydrological_transport_model | |).

IBM (Individual-based model): An ecological model, build on the basis of traits, physiology and behaviour of interacting

individuals. (http://en.wikipedia.org/wiki/Agent-based_model | | DeAngelis and Mooij 2005).

IDE (Integrated development environment): A software application that provides comprehensive facilities to computer

programmers for software development. (http://en.wikipedia.org/wiki/Integrated_development_environment | |).

Identifiability (): A property of a model pointing at identical distribution of the data and the values of the model. Non-identifiable

models can lead to differences in conclusions drawn based on the model values and observed data. (http://en.wikipedia.org/

wiki/Identifiability | | Huang 2005).

IMAGE (Integrated Model to Assess the Global Environment): A global catchment nutrient model. (| http://themasites.pbl.nl/

models/image | Morée et al. 2013).

Imperative programming (): A programming paradigm that describes computation in terms of statements that change a program

state. Imperative programming is focused on describing how a program operates. (http://en.wikipedia.org/wiki/Imperative_

programming | |).

INCA (INtegrated CAtchment model): A process-based dynamic model for plant–soil system dynamics and in-stream

biogeochemical and hydrological processes. (| http://www.reading.ac.uk/geographyandenvironmentalscience/research/INCA |

Wade et al. 2002).

Interpolation uncertainty (): An unknown difference between model and reality as a result of calibration on different spatial or

temporal data than the validation of the model. Whenever the validation falls out of the calibrated range, an interpolation

uncertainty is introduced. (http://en.wikipedia.org/wiki/Uncertainty_quantification | |).

Inverse Modelling (): A technique used to infer from observations the causal factors that produced them. (http://en.wikipedia.org/

wiki/Inverse_problem | |).

InVitro (): An agent-based ecosystem-level management strategy evaluation modelling framework. (| http://www.cmar.csiro.au/

research/mse/invitro.htm | Fulton et al. 2011).

JAVA (): A general-purpose object-oriented computer programming language that allows to run software applications under

various operating systems without the need for recompilation. (http://en.wikipedia.org/wiki/Java_%28programming_

language%29 | |).

JPJS (named after Jensen-Pedersen-Jeppesen-Søndergaard): A model for describing the recovery process after nutrient

abatement. (| | Jensen et al. 2006).

LAKE (from H. Baumert): A 1D hydrodynamic k-epsilon turbulence model that considers internal waves. (| | Baumert and

Peters 2004).

LAKE (from V. Stepanenko): A 1D hydrodynamic k-epsilon turbulence model capable of simulating methane. (| | Stepanenko

et al. 2011, 2013).

LAKEMAB (LAKE MAss Balance model): A dynamic model for lake water quality. (| | Bryhn and Håkanson 2007).
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Text Box 1 continued

LAKEoneD (): A 1D hydrodynamic k-epsilon turbulence model with submodules for dissolved oxygen and a simple competition

model for three functional phytoplankton groups. (| | Jöhnk and Umlauf 2001; Jöhnk et al. 2008).

LakeWeb (): A model to quantitatively describe the characteristic of lake food web interactions so that production and biomasses

can be determined for the nine functional groups of organisms included in the model. (| | Håkanson and Boulion 2003).

Lanier (): A network model based on EcoPATH, but using P as the currency. (| | Borrett and Osidele 2007).

LDE (Lattice differential equations): A set of spatially discrete ordinary differential equations. (| | Chow et al. 1996).

LGPL (GNU Lesser General Public Licence): An open-source software licence that is less strict than GPL. (http://en.wikipedia.
org/wiki/GNU_Lesser_General_Public_License | http://www.gnu.org/licenses/lgpl.html |).

MARVL (MARine Virtual Lab): A suite of complex models, e.g. ocean circulation, waves, water quality, and marine

biogeochemistry, a network of observing sensors, and a host of value-adding tools. (| http://www.marvl.org.au |).

Mass-balanced model (): A model that checks for the conservation of mass. (http://en.wikipedia.org/wiki/Mass_balance, http://

en.wikipedia.org/wiki/Conservation_of_mass | |).

Mathematica (): A computational software program. (http://en.wikipedia.org/wiki/Mathematica | http://www.wolfram.com/

mathematica |).

MATLAB (): A numerical computation environment. (http://en.wikipedia.org/wiki/MATLAB | http://nl.mathworks.com/

products/matlab |).

MATSEDLAB (): A MATLAB module for sediment diagenesis, carbon burial and bio-mixing. (| https://uwaterloo.ca/

ecohydrology/software | Couture et al. 2010).

MECOSED (Model for Estuarine and COastal SEDiment transport): A model for estuarine and coastal transport. (| https://

wiki.csiro.au/display/C2CCOP/EMS?-?MECOSED |).

Medawar zone (): A conceptual zone depicting the area of problems which are most likely to produce fruitful results. Problems

that are too simple are unlikely to produce novel or significant results. Problems that are too ambitious may not succeed at all or

may be rejected by the research community at large. (http://en.wikipedia.org/wiki/Medawar_zone | |).

Metamodel (): An abstraction of another model. (http://en.wikipedia.org/wiki/Metamodeling | |).

Mike11 (after developer Mike Abbot): A 1D hydrodynamic and hydrological model for the simulation of rivers and channels.

(http://en.wikipedia.org/wiki/MIKE_11 | http://www.mikepoweredbydhi.com/products/mike-11 | Nishat and Rahman 2009;

Wijesekara et al. 2014).

Mike21 (after developer Mike Abbot): A 2D hydrodynamic model with flexible mesh for coastal and marine engineering and

water quality applications. (http://en.wikipedia.org/wiki/MIKE_21 | http://www.mikepoweredbydhi.com/products/mike-21 |

Appendini et al. 2013; Kaergaard and Fredsoe 2013).

Mike3 (after developer Mike Abbot): A 3D hydrodynamic model with flexible mesh for coastal and marine engineering and

water quality applications. (http://en.wikipedia.org/wiki/MIKE_3 | http://www.mikepoweredbydhi.com/products/mike-3 |

Passenko et al. 2008; Bolaños et al. 2014).

Mike-ECO Lab Eutrophication Model 1 (after developer Mike Abbot): An aquatic ecosystem modelling tool for use with

Mike hydrodynamic drivers that includes several built-in ecosystem configurations and the ability to implement own equations.

(| | Rasmussen et al. 2000; Hammrich and Schuster 2014).

Mike-FLOOD (): A toolbox for flood modelling. (http://en.wikipedia.org/wiki/MIKE_FLOOD | http://www.mikepoweredbydhi.

com/products/mike-flood |).

Mike-SHE (after developer Mike Abbot—System Hydrologique European): A system for integrated catchment modelling,

including groundwater, surface water, recharge and evapotranspiration. (http://en.wikipedia.org/wiki/MIKE_SHE | http://www.

mikepoweredbydhi.com/products/mike-she | Refsgaard et al. 2010).

Mike-URBAN (): A toolbox for urban water modelling. (http://en.wikipedia.org/wiki/MIKE_URBAN | http://www.

mikepoweredbydhi.com/products/mike-urban |).

Minimal dynamic model (): A dynamic model with few components. One way to further define this concept would be as those

dynamical models that are simple enough to be analysed with analytical techniques. See also Complex dynamic model. (http://

en.wikipedia.org/wiki/Mathematical_model#Complexity | |).

MINLAKE (): A 1D hydrodynamic model that includes dissolved oxygen. (| | Fang and Stefan 1996b, a; Stepanenko et al. 2013).

MIP (Model Intercomparison Project): A project to intercompare the output of multiple models using the same input data, i.e.

an ensemble technique. Often used in climate and hydrologic research, sparse in aquatic ecosystem modelling. (| http://www.

unige.ch/climate/lakemip |).

MME (Multi-Model Ensembles): A type of ensemble modelling in which a given problem is addressed concurrently with multiple

models. (http://en.wikipedia.org/wiki/Ensemble_averaging | |).
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Text Box 1 continued

Model (): A knowledge domain-specific mathematical description of a study object, including input data and parameter values.

An example of a knowledge domain is aquatic ecology. (http://en.wikipedia.org/wiki/Mathematical_model | | Refsgaard and

Henriksen 2004).

Model application (): A usage of a specific model for a specific case study. (| |).

Model application domain (): A set of model applications that belong to a specific collection of model usages. An example of a

model application domain is ‘eutrophication’. (| |).

Model approach (): A modelling technique or method used to access a question. Examples of model approaches are

mechanistic—e.g. trait-based, process-based—versus statistical—e.g. regression, neural network. (| |).

Model calibration (): A procedure of adjustment of parameter values of a model to reproduce the response of reality within the

range of accuracy specified in the performance criteria. (| | Refsgaard and Henriksen 2004).

Model code (): A mathematical formulation in the form of a computer program that is so generic that it, without program changes,

can be used to establish a model with the same basic type of equations—but allowing different input variables and parameter

values—for different study areas. (http://en.wikipedia.org/wiki/Source_code | | Refsgaard and Henriksen 2004).

Model confirmation (): A determination of adequacy of the conceptual model to provide an acceptable level of agreement for the

domain of intended application. This is in other words the scientific confirmation of the theories/hypotheses included in the

conceptual model. (| | Refsgaard and Henriksen 2004).

Model set-up (): An establishment of a site-specific model using a model code. This requires, among other things, the definition of

boundary and initial conditions and parameter assessment from field and laboratory data. (| | Refsgaard and Henriksen 2004).

Model uncertainty (): A misestimate of the data by the model’s output. Model uncertainty has different origins as, for example,

parameter uncertainty, structural uncertainty or algorithmic uncertainty. (http://en.wikipedia.org/wiki/Uncertainty_

quantification | |).

Model validation (): An approval that a model within its domain of applicability possesses a satisfactory range of accuracy

consistent with the intended application of the model. (| | Refsgaard and Henriksen 2004).

Modelling environment (): A term that can refer to a modelling framework, an integrated development environment or a

combination of both. (| | See IDE and Modelling framework).

Modelling framework (): A software package that can be combined with user-written code to create a software application. A

key characteristic of a modelling framework, also referred to a software framework is that the framework calls the user-defined

code. This distinguishes a modelling framework from a software library. Mostly, the framework itself cannot be modified by the

user. (http://en.wikipedia.org/wiki/Software_framework | | Mooij and Boersma 1996).

Modelling suite (): A set of interconnected models, mostly implemented in a common modelling framework. (| https://www.

deltares.nl/nl/software/delft3d-suite, http://www.mx-groep.nl/duflow, http://www.emg.cmar.csiro.au/www/en/emg/software/

EMS.html, http://www.deltares.nl/en/software/sobek |).

MOM (Modular Ocean Model): A 3D numerical ocean model based on the hydrostatic primitive equations. (http://en.wikipedia.

org/wiki/Modular_ocean_model | http://mom-ocean.org/web | Griffies et al. 2005).

MONERIS (MOdelling Nutrient Emissions in RIver Systems): A catchment nutrient model. (| http://www.icpdr.org/main/

activities-projects/moneris-modelling-nutrient-emissions-river-systems |).

MOSSCO (MOdular coupling System for Shelves and COasts): An interface between various hydrodynamical and water

quality process formulations. (| http://www.mossco.de |).

Multi-compartment model (): A type of mathematical model used for describing the way materials or energies are transmitted

among the compartments of a system. (http://en.wikipedia.org/wiki/Multi-compartment_model | |).

MUSIC (Model for Urban Stormwater Improvement Conceptualisation): A decision support system for storm-water quality

management. (| http://www.ewater.com.au/products/music |).

Mylake (): A 1D model for lake physics and biogeochemistry suitable for uncertainty estimation and sensitivity analysis. (| https://

github.com/biogeochemistry/MyLake_public | Saloranta and Andersen 2007).

MyM (): An integrated environment for the development, visualization and application of simulations of dynamic systems. (|

http://www.my-m.eu | Beusen et al. 2011).

NEMO (Nucleus for European Modelling of the Ocean): A 3D modelling framework for oceanographic research, operational

oceanography seasonal forecast and climate studies. (| http://www.nemo-ocean.eu | Madec 2012).

NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography): A model to simulate the dynamics

of nutrient–phytoplankton–zooplankton food web in the ocean. (| https://www.myroms.org/wiki/index.php/nemuro.in | Kishi

et al. 2007).
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Text Box 1 continued

NEMURO.FISH (North Pacific Ecosystem Model for Understanding Regional Oceanography with FISH module): An
NEMURO model version extended with a fish module. (| | Megrey et al. 2007).

NETLOGO (): A programmable modelling framework based on the LOGO programming language for developing agent-based

models of natural and social phenomena with agent-based models. NET refers to the decentralized, interconnected nature of the

phenomena that can be modelled. LOGO refers to the LOGO language of which a dialect is used. (http://en.wikipedia.org/wiki/

NetLogo | http://ccl.northwestern.edu/netlogo |).

Neural network model (): A family of statistical learning models inspired by biological neural networks. (http://en.wikipedia.org/

wiki/Artificial_neural_network | |).

NPZD model (Nutrient–Phytoplankton–Zooplankton–Detritus model): An AEM that focusses on the dynamics of nutrients,

phytoplankton, zooplankton and detritus, thereby ignoring higher trophic levels. (| http://fvcom.smast.umassd.edu/2014/01/17/

2-research-npzd-model | Heinle and Slawig 2013).

Numerical integration method (): A computational method to solve differential equations by approximating the integral. (http://

en.wikipedia.org/wiki/Numerical_integration | | Press et al. 1986).

Numerical recipes (): A book series and an extensive set of algorithms to perform various mathematical techniques, available in

FORTRAN 77, FORTRAN 90, Pascal, C and C??. (http://en.wikipedia.org/wiki/Numerical_Recipes | http://www.nr.com |

Press et al. 1986).

Object-oriented programming (): A programming paradigm based on the concept of objects, which are data structures that

contain data, in the form of fields, often known as attributes and code, in the form of procedures, often known as methods.

(http://en.wikipedia.org/wiki/Object-oriented_programming | |).

ODD (Overview, Design concepts and Details): A format to document individual-based models. (| | Grimm et al. 2006).

ODE (Ordinary differential equations): A function or a set of functions of one independent variable and its derivatives. (http://

en.wikipedia.org/wiki/Ordinary_differential_equation | |).

OMEXDIA in FABM (Ocean Margin EXchange and early DIAgenesis model): A model describing the dynamics of carbon,

nitrogen and oxygen in marine sediments. (| http://www.rforscience.com/modelling/omexdia | Soetaert et al. 1996).

Optimization model (): A model in which—part of the—parameters are chosen such as to maximize or minimize a certain

function, for instance the total amount of biomass. (http://en.wikipedia.org/wiki/Mathematical_optimization | |).

OSIRIS (Object-oriented SImulation fRamework for Individual-based Simulations): A set of C?? routines that assist the

development of ecological simulation models, including individual-based models. (| | Mooij and Boersma 1996).

Pamolare I (): A model for deep lakes with thermocline development by incorporating three lake models: a one-layer model, a

structurally dynamic model and a drainage area model. (| | Gurkan et al. 2006; Jørgensen 2009, 2010; Xu et al. 2013).

Pamolare II (): A structurally dynamic model for shallow lakes. (| http://unep.org/ietc/pamolare/tabid/79376/default.aspx |

Gurkan et al. 2006; Jørgensen 2009, 2010; Xu et al. 2013).

Papyrus Simulator (): An ecosystem model for rooted papyrus Cyperus papyrus vegetation in seasonally or permanently

inundated wetlands in Africa implemented in Stella. (| | Van Dam et al. 2007; Hes et al. 2014).

Parameter uncertainty (): A misestimate of the data by the model’s output as a result of errors in the parameter estimation.

Parameter uncertainty can be the result of experimental uncertainty in the data used to estimate the parameter values as well as

due to the estimation method used. (http://en.wikipedia.org/wiki/Uncertainty_quantification | |).

PCDitch in ACSL/GRIND for MATLAB/OSIRIS/R (): A box model implementation of an AEM for linear waters with a focus

on competition between various growth forms of macrophytes and the transfer of phosphorus, nitrogen and carbon through the

food web. (http://en.wikipedia.org/wiki/PCDitch | | Van Liere et al. 2007).

PCDitch in DUFLOW (): A network implementation of an AEM for linear water structures with a focus on competition between

various growth forms of macrophytes and the transfer of phosphorus, nitrogen and carbon through the food web. (http://en.

wikipedia.org/wiki/PCDitch | | Van Liere et al. 2007).

PCDitch metamodel (): A metamodel of the outcomes of the box model implementation of PCDitch for a range of management

relevant settings of the model. (http://en.wikipedia.org/wiki/PCDitch | http://themasites.pbl.nl/modellen/pcditch | Van Liere

et al. 2007).

PCLake in ACSL/GRIND for MATLAB/OSIRIS/R (): A box model implementation of an AEM for linear waters with a focus

on trophic interactions in the aquatic food web and transfer of phosphorus, nitrogen and carbon through the food web. (http://en.

wikipedia.org/wiki/PCLake | | Janse et al. 2008, 2010).

PCLake in DELWAQ (): A 2D horizontal model implementation of an AEM for linear waters with a focus on trophic

interactions in the aquatic food web and transfer of phosphorus, nitrogen and carbon through the food web. (http://en.wikipedia.

org/wiki/PCLake | | Janse et al. 2008, 2010).
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Text Box 1 continued

PCLake in DUFLOW (): A network implementation of an AEM for linear waters with a focus on trophic interactions in the

aquatic food web and transfer of phosphorus, nitrogen and carbon through the food web. (http://en.wikipedia.org/wiki/PCLake |

| Janse et al. 2008, 2010).

PCLake in FABM (): A 1D vertical implementation of an AEM for linear waters with a focus on trophic interactions in the

aquatic food web and transfer of phosphorus, nitrogen and carbon through the food web. (http://en.wikipedia.org/wiki/PCLake |

| Janse et al. 2008, 2010).

PCLake metamodel (): A metamodel of the outcomes of the box model implementation of PCLake for a range of management

relevant settings of the model. (http://en.wikipedia.org/wiki/PCLake | http://themasites.pbl.nl/modellen/pclake | Janse et al.

2008, 2010).

PCLake submersed macrophyte equations (): A sub-model containing PCLAKE submerged macrophyte equations for stratified

lakes that can be coupled to SALMO and GOTM in R. (| http://r-forge.r-project.org/projects/rlimnolab, http://rlimnolab.r-forge.

r-project.org | Sachse et al. 2014).

PCRGLOBWB (PCRaster Global Water Balance): A large-scale hydrological model intended for global to regional studies. (|

http://pcraster.geo.uu.nl/projects/applications/pcrglobwb | Van Beek et al. 2011; Sutanudjaja et al. 2014).

PDE (Partial differential equations): A function or a set of functions of multiple independent variables and its derivatives, in

contrast to ODE. (http://en.wikipedia.org/wiki/Partial_differential_equation | |).

PELETS-2D (Program for the Evaluation of Lagrangian Ensemble Transport Simulations): A program for the evaluation of

Lagrangian ensemble transport simulations. (| http://www.coastdat.de/applications/pelets_2d | Callies et al. 2011; Neumann

et al. 2014).

Performance criteria (): A level of acceptable agreement between model and reality. The performance criteria apply both for

model calibration and model validation. (| | Refsgaard and Henriksen 2004).

PERSIST (Pan-European Runoff SImulator for Solute Transport): A semi-distributed rainfall-runoff modelling toolkit for

use with the INCA family of models. (| http://www.slu.se/en/collaborative-centres-and-projects/slu-water-hub/models/persist,

http://www.hydrol-earth-syst-sci.net/18/855/2014/hess-18-855-2014.html |).

PEST (model independent Parameter Estimation & Uncertainty Analysis): A standard software package for parameter

estimation and uncertainty analysis of complex computer models. (| http://www.pesthomepage.org | Doherty 2015).

PHOSMOD (PHOSphate MODel): A model to simulate the effects of fertilizers on plant growth and plant P concentration. (| |

Greenwood et al. 2001).

PHREEQC (PH REdox EQuilibrium in C): A computer program for speciation, batch-reaction, one-dimensional transport, and

inverse geochemical calculations. (| http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc | Appelo and Postma 2005).

Physiologically structured population models (): An individual-based model approach in which growth, reproduction, mortality

and interactions with other organisms are linked with individual traits in general and with size in particular. (| | De Roos and

Persson 2001).

Piscator (): An individual-based model of fish communities. (| http://www.projectenaew.wur.nl/piscator | Van Nes et al. 2002a).

Polar coordinates (): A two-dimensional coordinate system in which each point on a plane is determined by a distance from a

reference point and an angle from a reference direction. (http://en.wikipedia.org/wiki/Polar_coordinate_system | |).

POM (Pattern-Oriented Modelling): A bottom-up approach to the analysis of complex systems through a focus on only the

relevant patterns in the real system, instead of trying to approximate the real system as closely as possible in all aspects. (http://

en.wikipedia.org/wiki/Pattern-oriented_modeling | | Grimm et al. 2005).

POM (Princeton Ocean Model): A 3D finite-difference open-source hydrodynamic model. (http://en.wikipedia.org/wiki/

Princeton_ocean_model | http://www.ccpo.odu.edu/POMWEB, http://www.aos.princeton.edu/WWWPUBLIC/PROFS/

NewPOMPage.html |).

Procedural programming (): A programming paradigm, derived from structured programming, based upon the concept of the

procedure call to routines, subroutines, methods, or functions. (http://en.wikipedia.org/wiki/Procedural_programming | |).

Process-based model (): A model that models the dynamics of the states of the system on the basis of the processes acting on

these states. (| http://www.coastalwiki.org/wiki/Process-based_modelling |).

PROTECH (Phytoplankton RespOnses To Environmental CHange): A phytoplankton community model. (| http://www.ceh.

ac.uk/services/lake-ecosystem-models-assessing-phytoplankton | Reynolds et al. 2001; Elliott et al. 2010).

Python (): A general-purpose object-oriented high-level programming language. (http://en.wikipedia.org/wiki/Python_

(programming_language) | https://www.python.org |).

QUAL2E (stream water QUALity Model, 2nd Enhanced version): A river and stream water quality model for 1D diurnal

dynamics. (| | Brown and Barnwell 1987).
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Text Box 1 continued

QUAL2 K (stream water QUALity Model): A river and stream water quality model for 1D diurnal dynamics. Updated version

of QUAL2E. (| http://www.epa.gov/athens/wwqtsc/html/qual2k.html | Chapra et al. 2008).

QUAL2 KW (stream water QUALity Model): A river and stream water quality model that is intended to represent a

modernized version of the QUAL2E model and includes more processes than QUAL2K. (| http://www.ecy.wa.gov/programs/

eap/models.html | Pelletier et al. 2006).

R (): A programming language and software environment for statistical computing and graphics. The package R/deSolve allows

for numerical simulation of systems of differential equations. (http://en.wikipedia.org/wiki/R_(programming_language) | http://

www.r-project.org, http://desolve.r-forge.r-project.org |).

Reality (): A natural system that is the object of a particular scientific study. (http://en.wikipedia.org/wiki/Reality | | Refsgaard and

Henriksen 2004).

Rectilinear grid (): A n-dimensional grid consisting of rectangles. (http://en.wikipedia.org/wiki/Regular_grid | |).

Regime shift (): A relatively abrupt change from one regime to a contrasting one, where a regime is a dynamic ‘state’ of a system

with its characteristics stochastic fluctuations and/or cycles. (http://en.wikipedia.org/wiki/Regime_shift | | Scheffer et al. 2009).

Regression model (): A statistical technique for estimating the relationship between a dependent variable and one or more

independent variables. (http://en.wikipedia.org/wiki/Regression_analysis | |).

Regular grid (): A n-dimensional grid of parallelotopes such as rectangles, parallelograms or cuboids. (http://en.wikipedia.org/

wiki/Regular_grid | |).

RIVERSTRAHLER (): A nutrient and phytoplankton model for rivers. (| | Billen et al. 1994).

RIVPACS (River InVertebrate Prediction And Classification System): A statistical model relating species composition in

rivers to abiotic factors. (| http://www.ceh.ac.uk/products/software/rivpacs.html |).

ROMS (Regional Ocean Modeling System): A free-surface, terrain-following, primitive equations ocean model. (http://en.

wikipedia.org/wiki/Regional_Ocean_Modeling_System | https://www.myroms.org | Shchepetkin and McWilliams 2005).

ROMS-BGC (Regional Ocean Modeling System BioGeoChemical model): An ocean biogeochemical model with various

configuration options. (| http://www.myroms.org | Xiao and Friedrichs 2014).

rSALMO (Simulation by an Analytical Lake MOdel): A dynamic ecological model that simulates main compartments of the

pelagic food web of lakes and reservoirs implemented in R. It can link to a sub-model for PCLake’s submerged macrophytes

and can be driven by hydrophysics provided by external models. 0D to 1D model grids can be set up. (| https://r-forge.r-project.

org/projects/rlimnolab |).

Runge–Kutta integration (): An important family of implicit and explicit iterative methods to numerically solve ordinary

differential equations. (http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods | |).

Runoff model (): A mathematical model describing the rainfall–runoff relations of a rainfall catchment area, drainage basin or

watershed. (http://en.wikipedia.org/wiki/Runoff_model_(reservoir)) | |).

SALMO 1D/HR (Simulation by an Analytical Lake MOdel): A dynamic ecological model that simulates main compartments

of the pelagic food web of lakes and reservoirs implemented in Delphi and C. (| http://www.simecol.de/salmo | Benndorf and

Recknagel 1982; Baumert et al. 2005).

SALMO 2 (Simulation by an Analytical Lake MOdel): A dynamic ecological model that simulates main compartments of the

pelagic food web of lakes and reservoirs implemented in Java. (| http://www.simecol.de/salmo | Benndorf and Recknagel 1982;

Petzoldt and Siemens 2002).

Scenario analysis (): A process of analysing possible future events by considering alternative possible outcomes. In contrast to

prognoses, scenario analysis does not aim at extrapolation of the past. Instead, it tries to consider a whole suite of possible

developments and turning points for the future. (http://en.wikipedia.org/wiki/Scenario_analysis | |).

SCOBI (Swedish Coastal and Ocean BIogeochemical model): A functional-group-based phytoplankton and water quality

model. (| http://www.smhi.se/en/research/research-departments/oceanography/scobi-1.8680 | Eilola et al. 2009).

Scripting language (): A programming language that supports interpreted—rather than compiled—scripts that automate the

execution of tasks that could alternatively be executed one by one by a human operator. (http://en.wikipedia.org/wiki/Scripting_

language | |).

SENECA (Simulation ENvironment for ECological Application): A modelling framework for the implementation of AEMs. (|

| De Hoop et al. 1992).

Sensitivity analysis (): A quantification of the change in model output as a function of the change in model input. (http://en.

wikipedia.org/wiki/Sensitivity_analysis | |).
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Text Box 1 continued

SHOC (Sparse Hydrodynamic Ocean Code): A sparse coordinate hydrodynamic model optimized for coastal systems. (| http://

www.emg.cmar.csiro.au/www/en/emg/software/EMS/hydrodynamics.html | Wild-Allen et al. 2010; Oke et al. 2013; Herzfeld

and Waring 2014).

SIMCAT (SIMulation of CATchments): A very simple water quality model for lakes. (| | Comber et al. 2013).

SIMSTRAT (): A 1D-model for simulating mixing, stratification and temperature in lakes, based on k-epsilon approach,

including the effects of internal waves. (| | Goudsmit et al. 2002).

Simulation (): (| | See Temporal simulation).

SMART (Simulation and Modelling Assistance for Research and Training): A tutorial modelling framework for the

implementation of dynamical models that is structured in database fashion and therefore bears resemblance with DATM. Next

to implementation SMART enables running of models in a structured way, i.e. in model experiments, that contain the model

version and input used and the resulting output. (| http://harmoniqua.wur.nl/smart | Kramer and Scholten 2001).

SOBEK (after SOBEK, the ancient Egyptian god of the nile): A 1D/2D modelling suite for flood forecasting, optimization of

drainage systems, control of irrigation systems, sewer overflow design, river morphology, salt intrusion and surface water

quality. (| http://www.deltares.nl/en/software/sobek |).

Software application (): A set of user-written code within a modelling framework that is designed to execute certain functions or

tasks. (| |).

Software framework (): - (| | See Modelling framework).

Software library (): A set of functions or routines that can be called from a software application to perform a specific task, e.g.

numerical integration. (http://en.wikipedia.org/wiki/Library_(computing) | |).

Spatially explicit model (): A model that explicitly takes space into account. This can be done with vector- or grid-based

approaches. (| | Minor et al. 2008).

SPM in FABM (Suspended Particulate Matter model): A suspended particulate matter pelagic model with multiple size

classes. (| http://sf.net/p/fabm | Burchard et al. 2004).

Statistical model (): A set of assumptions concerning the generation of the observed data and similar data from a larger

population. (http://en.wikipedia.org/wiki/Statistical_model | |).

STELLA (): A modelling framework that allows for drag-and-drop modelling in a graphical user interface. (| http://www.

iseesystems.com/softwares/Education/StellaSoftware.aspx |).

Stoichiometric model (): A modelling approach that considers how the balance of energy and elements affects and is affected by

organisms and their interactions in ecosystems. (http://en.wikipedia.org/wiki/Ecological_stoichiometry | |).

Structural equation model (): A statistical model based on the combination of two components: a measurement model that

defines latent variables using one or more observed variables, and a structural regression model that links latent variables

together. (http://en.wikipedia.org/wiki/Structural_equation_modeling | |).

Structural uncertainty (): A misestimate of the data by the model’s output due to missing or imperfect process formulations

within the model. (http://en.wikipedia.org/wiki/Uncertainty_quantification | |).

Structured grid (): (| | See Curvilinear grid).

SWAN (Simulating WAves Nearshore): A wave model for wind-generated waves in coastal regions and inland waters. (| http://

www.swan.tudelft.nl, http://swanmodel.sourceforge.net | Booij et al. 1996).

SWAT (Soil and Water Assessment Tool): A semi-distribution eco-hydrological model. (http://en.wikipedia.org/wiki/SWAT_

model | http://swat.tamu.edu | Arnold et al. 1998).

SWATCUP (Soil and Water Assessment Tool Calibration and Uncertainty Procedure): A calibration utility for the SWAT

model. (http://en.wikipedia.org/wiki/Swat-CUP | | Abbaspour 2007; Abbaspour et al. 2007).

SWMM (Storm Water Management Model): A dynamic rainfall–runoff–subsurface runoff simulation model primarily for

urban and suburban areas. (http://en.wikipedia.org/wiki/Storm_Water_Management_Model | |).

TDT (Typed Data Transfer library): An interface for the transmission of data between programs in a platform- and

programming language-independent way. (| https://www.pik-potsdam.de/research/transdisciplinary-concepts-and-methods/

archiv/projects/modsimenv/modenv/tdt |).

Telemac (): An integrated suite of solvers for use in the field of free-surface flow. (http://en.wikipedia.org/wiki/TELEMAC |

http://www.opentelemac.org |).

Temporal simulation (): A basic model analysis technique in which time series of output data are produced, mostly by numerical

integration of process formulations in the form of ordinary, partial, or lattice differential equations. (http://en.wikipedia.org/

wiki/Computer_simulation | | Refsgaard and Henriksen 2004).
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Text Box 1 continued

Trait-based model (): An individual-based model approach in which growth, reproduction, mortality and interactions with other

organisms are linked with individual traits. (| http://bio.uib.no/te/research/traits.php |).

Triangular mesh (): A mesh grid consisting of triangles in one, two or three dimensions. (http://en.wikipedia.org/wiki/Triangle_

mesh | |).

TRIM (Tidal, Residual and Inter-tidal Mutflat model): A hydrodynamic model optimized for coastal systems. (| http://sfbay.

wr.usgs.gov/watershed/hydro_model.html | Cheng et al. 1993; Cugier and Le Hir 2002).

TUFLOW-FV (Two-dimensional Unsteady FLOW Finite-Volume): A 3D flexible mesh finite volume hydrodynamic model. (|

http://www.tuflow.com/Tuflow%20FV.aspx | Jamieson et al. 2012; Bruce et al. 2014).

Uncertainty analysis (): A quantification of the uncertainty in model output as a function of the uncertainty in model input.

(http://en.wikipedia.org/wiki/Uncertainty_analysis | |).

Validation (): (| | See Model validation).

VisSim (VISual language for SIMulating nonlinear dynamic systems): A visual block diagram language for simulation

nonlinear dynamic systems. (http://en.wikipedia.org/wiki/VisSim | http://www.vissim.com |).

Visual Basic (): An object-oriented programming language and integrated development environment. (http://en.wikipedia.org/

wiki/Visual_basic | https://msdn.microsoft.com/en-us/vstudio/ms788229.aspx |).

Vollenweider model (): An empirical and statistical lake eutrophication. (http://en.wikipedia.org/wiki/Richard_Vollenweider | |

Vollenweider 1975).

WAFLEX (): A spreadsheet-based model. It can be used to analyse upstream–downstream interactions, dam management options

and water allocation and development options. (http://en.wikipedia.org/wiki/WAFLEX | |).

WASP (Water quality Analysis Simulation model): A dynamic water quality model used to investigate pollutants in aquatic

systems in 1D, 2D, and 3D. (| http://www.epa.gov/athens/wwqtsc/html/wasp.html |).

Water Framework Explorer (): An analysis tool to calculate the effect of restoration and mitigation measures on the ecological

and chemical quality of surface waters. (| https://www.deltares.nl/en/projects/water-framework-directive-explorer, https://

publicwiki.deltares.nl/display/KRWV/KRW-Verkenner |).

Water quality model (): A formal procedure by which the impact of external or internal forcing on water quality parameters can

be estimated. Water quality model is sometimes used as a synonym for AEM. (http://en.wikipedia.org/wiki/Water_quality_

modelling | |).

Water quantity model (): (| | See Hydraulic model, Hydrodynamic model and Hydrological model).

WATERRAT (WATER quality Risk Analysis Tool): A spreadsheet-based modelling package used to make decisions in the

management of surface water quality. (| | McIntyre et al. 2003; McIntyre and Wheater 2004).

WMS (Watershed Modeling System): A model for water quantity and quality in watersheds. (http://en.wikipedia.org/wiki/

WMS_(hydrology_software)) | http://www.xmswiki.com/wiki/WMS:WMS |).

WWQM (Wetlands Water Quality Model): A model of constructed wetland dynamics. (| | Chavan and Dennett 2008; Huang

et al. 2014).
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Håkanson L, Eklund JM (2007) A dynamic mass balance model

for phosphorus fluxes and concentrations in coastal areas.

Ecol Res 22:296–320

Håkanson L, Gyllenhammar A (2005) Setting fish quotas based

on holistic ecosystem modelling including environmental

factors and foodweb interactions—a new approach. Aquat

Ecol 39:325–351

Hamilton DP, Schladow SG (1997) Prediction of water quality

in lakes and reservoirs. Part I—model description. Ecol

Model 96:91–110

Hamilton SH, ElSawah S, Guillaume JHA, Jakeman AJ, Pierce

SA (2015) Integrated assessment and modelling: overview

and synthesis of salient dimensions. Environ Model Softw

64:215–229

Hammrich A, Schuster D (2014) Fundamentals on ecological

modelling in coastal waters including an example from the

river Elbe. Die Küste 81:107–118
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Valverde S, Solé RV (2015) Punctuated equilibrium in the large-

scale evolution of programming languages. J R Soc Inter-

face 12:20150249

Aquat Ecol (2015) 49:513–548 547

123



Van Beek LPH, Wada Y, Bierkens MFP (2011) Global monthly

water stress: 1.Water balance and water availability. Water

Resour Res 47

Van Dam AA, Dardona A, Kelderman P, Kansiime F (2007) A

simulation model for nitrogen retention in a papyrus wet-

land near Lake Victoria, Uganda (East Africa). Wetl Ecol

Manag 15:469–480

Van Der Heide T, Van Nes EH, Geerling GW, Smolders AJP,

Bouma TJ, Van Katwijk MM (2007) Positive feedbacks in

seagrass ecosystems: implications for success in conser-

vation and restoration. Ecosystems 10:1311–1322

Van Gerven LPA, Brederveld RJ, De Klein JJM, DeAngelis DL,

Downing AS, Faber M, Gerla DJ, ’t Hoen J, Janse JH,

Janssen ABG, Jeuken M, Kooi BW, Kuiper JJ, Lischke B,

Liu S, Petzoldt T, Schep SA, Teurlincx S, Thiange C,

Trolle D, Van Nes EH, Mooij WM (2015) Advantages of

concurrent use of multiple software frameworks in water

quality modelling using a database approach. Fund Appl

Limnol 186:5–20

Van Liere L, Janse JH, Arts GHP (2007) Setting critical nutrient

values for ditches using the eutrophication model PCDitch.

Aquat Ecol 41:443–449

Van Nes EH, Lammens EHRR, Scheffer M (2002a) PISCA-

TOR, an individual-based model to analyze the dynamics

of lake fish communities. Ecol Model 152:261–278

Van Nes EH, Scheffer M, Van den Berg MS, Coops H (2002b)

Dominance of charophytes in eutrophic shallow lakes—

when should we expect it to be an alternative stable state?

Aquat Bot 72:275–296

Van Oevelen D, Van Den Meersche K, Meysman FJR, Soetaert
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