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“Everything changes and nothing stands still” (Heraclitus). Here we

review three major improvements to freshwater aquatic ecosystem

models — and ecological models in general — as water quality

scenario analysis tools towards a sustainable future. To tackle the

rapid and deeply connected dynamics characteristic of the

Anthropocene, we argue for the inclusion of eco-evolutionary,

novelecosystemandsocial-ecologicaldynamics.Thesedynamics

arise from adaptive responses in organisms and ecosystems to

global environmental change and act at different integration levels

and different time scales. We provide reasons and means to

incorporate each improvement into aquatic ecosystem models.

Throughout this study we refer to Lake Victoria as a microcosm of

the evolving novel social-ecological systems of the Anthropocene.

The Lake Victoria case clearly shows how interlinked eco-

evolutionary,novelecosystemandsocial-ecologicaldynamicsare,

and demonstrates the need for transdisciplinary research

approaches towards global sustainability.
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86 Global water quality
The challenge of sustainable development

“Earth provides enough to satisfy every[one’s] needs but
not every[one’s] greed” (Mahatma Gandhi)

Since the dawn of history, humans have tried to improve

the quality of their lives through technological innova-

tion, scientific development and social organization. After

World War II, this ‘progress’ culminated in what is known

as ‘the great acceleration’. Hence, we now live in the

‘Anthropocene’, defined by a globally measurable impact

of human activities on system Earth [1,2], and we are

transgressing planetary boundaries [3,4]. To meet human

needs within the means of the planet, Kate Raworth [5,6]

recently presented the ‘Doughnut Economics’ frame-

work. Doughnut Economics specify “a safe and just space
for humanity” [5] in terms of eleven fundamental human

needs that together provide a social foundation and nine

aspects of global environmental change that provide an

ecological ceiling. Essential human needs and planetary

boundaries are also covered by the UN Sustainable

Development Goals [7,8]. Both frameworks provide tar-

gets society should strive for in its quest for a safe and just

future (Figure 1) but leave the question how to get there

unanswered [9]. Consequently, we require scenario anal-

yses to provide decision makers with feasible pathways to
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a sustainable future, that meet “the needs of the present
without compromising the ability of future generations to meet
their own needs” [10].

Mathematical models are essential tools to capture our

knowledge of numerous and intricate causal relations

between human activities and environmental impacts

and to translate them into scenarios for sustainable devel-

opment [11–14]. The power of scenario analyses has been

clearly shown by the work of the IPCC. They define

multiple greenhouse gas emission scenarios and make

projections for global temperature development under

each scenario that are now widely used in policy making

[15]. More recently, IPBES was established as the biodi-

versity and ecosystem focused analogue of IPCC [16–18].

Within the domain of IPBES, we here focus on freshwater

aquatic ecosystems and aim for scenario output on water

quality [19,20]. Freshwater aquatic ecosystems were

instrumental to the formulation of the ecosystem concept

[21–23], are seen as ‘sentinels of climate change’ [24] and

provide many essential ecosystem services to humanity

[25]. Therefore, freshwater aquatic ecosystem models can

strongly contribute to sustainable development.

State-of-the-art aquatic ecosystem models vary enor-

mously in complexity. Lumped models comprising one

or two non-linear differential equations [26] or even a
Doughnut
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Box 1 The case of Lake Victoria.

In the 1980s, the concurrent effects of the introduction of Nile

perch (Lates niloticus) [78] and eutrophication caused Lake

Victoria’s ecosystem to shift dramatically [79] through various of

eco-evolutionary adaptations (Figure 2). Hundreds of endemic

haplochromine species went extinct [80,81], Nile perch became

dominant, and other native species, such as the cyprinid dagaa

(Rastrineobola argentea) claimed a new place in the food web

(Figure 3). These two anthropogenic processes — species intro-

ductions and eutrophication — transformed the ecosystem’s

functioning and structure [82]. This led to new evolutionary path-

ways for the surviving native species. Surviving haplochromine

cichlids have evolved and adapted their morphology, diets and

mating [83]. Different species appear to have solved the

‘adaptation puzzle’ in a unique way [84], thus altering the flow of

nutrients and matter through the food web [82]. Societies have

adapted to the novel ecosystem’s new resources, building an

important export industry on Nile perch — creating new and

different job opportunities as well as infrastructure and land-uses

in the wider watershed [85]. In turn, ever-evolving societal needs

are shaping the dynamics of Lake Victoria’s ecosystem, through

fishing pressure, coastal development and further land-use

changes that influence the nutrient loading of the lake [85] (Fig-

ure 4). Lake Victoria is a microcosm of the evolving novel social-

ecological systems that are typical of the Anthropocene (Figure 1):

it has become more populated, and through trade and technol-

ogy, is increasingly connected to the broader world as well as to

its own resources, accelerating rates of change, as well as

increasing the vulnerability of peoples to global trade and to

resource collapse [86]. Sustainable development for Lake Victoria

implies understanding the dynamic and evolving nature of social-

ecological systems and boundaries of social needs — as opposed

to seemingly fixed limits to resources or thresholds to Earth

system dynamics — keeping in balance the rates and directions

of changes of human needs with those of ecosystem functioning.
single statistical relation [27] represent the ‘simple’ end of

this complexity spectrum [28]. They aim to generate

insight in the dominant responses of the system to the

dominant stress factors. Such models have been applied

successfully to many important ecosystems on Earth, as

well as to societal [29], medical [30,31] and psychological

[32] dynamic systems. On the ‘complex’ end of the

spectrum are integrated ecological models [33] that link

multiple ecosystems [34] and can be applied in ecological

management [35], and models that zoom in on ecological

detail (e.g. individual-based models) [36], make projec-

tions on shorter timescales [37] or combine simple models

with goal functions (e.g. structural dynamic models) [38].

Rather than arguing for the superiority of one of these

approaches, we see considerable complementarity and

redundancy among them and argue that we can exploit

such model diversity to get a more complete picture of the

systems under study [39].

Most aquatic ecosystem models use a combination of

correlations, patterns and cause-and-effect relations, with

process-based models most explicitly covering the latter

[40]. PCLake is a well-studied and well documented

example of a process-based aquatic ecosystem model.

Originally developed for shallow lakes only [41], the

model now also applies to ditches [42] and deep lakes

[43], and a wetland version is under construction [44]. In

the scientific domain, PCLake has been successfully

linked to theories on alternative stable states [28], com-

petition [45] and food web dynamics [46]. In the applied

domain, the model has been embedded in 1D, 2D and 3D

hydrodynamical drivers [47] and multiple modeling

frameworks [48], used to assess climate change impacts

on lake ecosystems [49], used to provide ecological

dynamics for modeling contaminant distributions in

aquatic systems [50], and successfully applied to a much

wider range of lake ecosystems in different climate zones

than the model was originally intended for [51,52].

Here we present three major challenges to improve the

applicability of aquatic ecosystem models — and ecologi-

cal models in general — for supporting sustainable devel-

opment in this time of global environmental change

(Figure 1). The first challenge arises from the notion that

if societal change leads to environmental change, this will

ultimately lead to adaptive responses in organisms and

species through eco-evolutionary dynamics [53]. Sec-

ondly, because each species solves the ‘adaptive puzzle’

in a unique way, or may go extinct, this will lead to new

species interactions and novel ecosystem dynamics [54].

Thirdly, not only ecosystems but also societies show non-

linear and sometimes hysteretic responses to stress, lead-

ing to complicated social-ecological dynamics [55,56].

These challenges are logically arranged along an axis of

complexity that ranges from single individuals to whole

societies. In this paper we review each of these challenges

and refer to Lake Victoria as an iconic example of how
www.sciencedirect.com 
eco-evolutionary, novel ecosystem and social-ecological

dynamics interact (Box 1).

Eco-evolutionary dynamics

“Nothing in biology makes sense except in the light of
evolution” (Theodosius Dobzhansky)

Adaptation is an essential and admired property of life

and hence we need to consider it when we aim for

understanding and projecting future life [57]. It involves

both ecological and evolutionary mechanisms. Recent

studies convincingly show that time scales of evolutionary

adaptation overlap with ecological time scales, leading to

eco-evolutionary dynamics [53,58,59] (Figure 2). Yet the

majority of state-of-the-art aquatic ecosystem models

largely ignore adaptation through ecological processes.

A partial exception to this is that many models put

emphasis on plasticity of organisms in their stoichiometry

with a focus on flexible carbon to phosphorus and carbon

to nitrogen ratios [60–62]. However, most models ignore

many other well-known ecological adaptive responses,
Current Opinion in Environmental Sustainability 2019, 36:85–95
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Figure 2
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Eco-evolutionary dynamics.

Biological systems have two fundamentally different mechanisms to adapt to changing environmental conditions: through ecological or

evolutionary adaptation. Within the ecological domain, organisms can respond at different time scales through behavior and phenotypic plasticity

to changing local conditions, or evade those changing conditions by movement or migration. Communities of species can respond to changing

local conditions through species sorting, or evade those conditions by range shifts. None of these responses requires evolution through a shift in

the genetic makeup of organisms or species but most of these responses create new selection regimes and can thus lead to microevolution. This

microevolution can then in turn invoke new ecological responses leading to eco-evolutionary dynamics. The case of Lake Victoria (Box 1)

exemplifies such intertwined eco-evo strands, where different components of the social-ecological system’s intergenerational ecological

adaptation influences the social-ecological system’s other components. For instance, the Nile perch boom - a multi-generational range shift -

resulted in behavioral changes, the exploitation of available phenotypic plasticity, migration and hybridization in the surviving haplochromine

cichlid species, potentially accelerating their microevolution [68]. The combination of haplochromines’ microevolution and plasticity in terms of diet

and diurnal behavior coincided with the cyprinid dagaa’s trophic niche shift and expansion of its population. Water-quality changes, shifts in fish-

species compositions and trophic roles also influence species sorting in phytoplankton and zooplankton communities. From the increasing fishing

pressure to the creation of an economy and infrastructure around international trade that followed the Nile perch boom, we can follow the eco-

evolution of the economic system.
such as inducible defenses [63] or behavioral responses

[64] to the presence of predators. Maybe even more

importantly, adaptation of organisms to changing condi-

tions through evolutionary mechanisms and their interac-

tion with ecological processes in eco-evolutionary dynam-

ics is mostly ignored despite the empirical evidence of

their importance [65–67].

There are multiple ways to build adaptation and eco-

evolutionary dynamics into process-based ecological

models. Trait-based models incorporate adaptation by

making a specific trait a state variable that is affected

by the adaptive process [69]. For example, Bruggeman

and Kooijman [70] defined a four-parameter phytoplank-

ton model that minimizes physiological detail, but

includes a sophisticated representation of community

diversity and inter-specific differences. Trait-based mod-

els can cover both phenotypic plasticity and evolutionary

dynamics in the average trait value of a population [71].

Individual-based models instead focus on trait variation

by modeling a sample of individuals that represents

standing phenotypic or genetic variation [72,73]. A
Current Opinion in Environmental Sustainability 2019, 36:85–95 
fundamental difference between trait-based and individ-

ual-based models is that in the latter evolution can be an

emergent property, whereas in trait-based models the

course of evolution is prescribed by the fitness function

built into the model [36,74].

Life on Earth has shown remarkable resilience by over-

coming no less than five mass extinction events [75].

Therefore, there is no reason to doubt the adaptive

potential of nature to overcome the ongoing sixth mass

extinction event [76]. At the geologic time scale (e.g.

millions of years and longer, Figure 2 right hand side),

macroevolution can be expected to counteract the current

ongoing mass extinction and restore global biodiversity to

pre-extinction levels. In contrast to this, at short time

scales (e.g. days and shorter, Figure 2 left hand side)

ecological processes such as differences in algal buoyancy

leading to surface layers of algal blooms [37] or variable

stoichiometry will dominate [77]. At the time scale of

human generations (e.g. decades, Figure 2 center), how-

ever, eco-evolutionary dynamics come into play and will

determine the survival, distribution and abundance of
www.sciencedirect.com
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species for human generations to come and thereby the

feasibility of goals set by the Sustainable Development

Goals or Doughnut Economics. Eco-evolutionary dynam-

ics should therefore be included in models for scenario

analyses to reach these goals.

Novel ecosystem dynamics

“There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy” (William

Shakespeare)

Adaptations to, and extinctions because of, environmen-

tal change will necessarily break up existing species

interactions and create new ones [87]. For example,

sudden changes such as dam construction can obstruct

migration and lead to eco-evolutionary dynamics in the

alewife-zooplankton system [88]. Slower environmental

changes, such as climate change, may result in trophic

mismatches in lakes [62] and create new species inter-

actions due to range shifts [89,90]. Another important

factor altering species interactions is that of exotic spe-

cies, here defined as species of which the dispersal

capacity is augmented by human activity [91,92]. Exotic
Figure 3

Holocene
Holocene

Novel ecosystem dynamics.

Species interactions in food webs evolved under the relatively stable condit

environmental change in the Anthropocene. For example, species invade (1

phenotypic responses leading to a trophic mismatch (4), or adapt by exploi

the case of Lake Victoria (Box 1), the Nile perch represents an introduced s

tilapia outcompeted native haplochromine cichlid species (2), swaths of ben

zooplanktivorous haplochromines evolved changes in the morphology of the

eating bigger prey in response to environmental changes (5). Please note th

examples from Lake Victoria in the abstract food web shown in the figure.
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species may become invasive because they are better

direct or indirect competitors [93], can benefit from

disturbance, secrete novel chemicals, are released from

their natural enemies [94], or alternatively, because they

carry their natural enemies with them, which are lethal for

the native species they compete with [95]. This myriad of

new species and traits leads to novel ecosystems, with

unique configurations and functioning [54] (Figure 3).

Here we define novel ecosystems as the human-modified,

engineered or built ecosystems typical of the

Anthropocene.

There are multiple ways to incorporate novel-ecosystem

dynamics into models. Models such as PCLake automati-

cally cover shifts in phenology and mismatches that may

arise because the life-history and phenology of all the

model’s functional groups are temperature-dependent,

with differential response curves [49]. As stated earlier,

however, many other adaptive eco-evolutionary mecha-

nisms are not covered by the model. And even more

importantly, the process of species extinction and invasion

itself is not dynamically modelled. The impact of invasive

species is difficult to capture in models given the stochas-

ticity in when and where they arrive and in whose company

[96]. Once this information is known, the incorporation of

specific invasive species, or even whole new functional
Anthropocene
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4

Anthropocene

2

3

4

1

5
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ions of the Holocene and will drastically change due to rapid global

), potentially replacing other species (2), go extinct (3), have differential

ting a new resource (5), all leading to novel ecosystem dynamics. In

pecies with a new position in the food web (1), the introduced Nile

thivorous haplochromines went extinct (3), some surviving

ir mouths and adapted to different foods (4) and finally, dagaa started

at we did not aim to mimic the trophic position of each of these

Current Opinion in Environmental Sustainability 2019, 36:85–95
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Figure 4
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Social-ecological dynamics.

Hypothetical response of fish stocks to fishing intensity and vice versa in a coupled social-ecological system inspired by Box 1 in [107]. Panels I

and II depict social-ecological cycles of unsustainable fishery, panels III and IV depict sustainable fishery. Blue lines refer to the dynamical

properties of the ecological system and red lines to the dynamical properties of the societal system. Panels I and III show isoclines with stable

equilibria as solid lines and unstable equilibria as dashed lines. Panels II and IV show only the stable parts of the isoclines as solid lines and the

catastrophic transitions between them as dashed arrows. Because of strong positive feedbacks, both the societal and ecological stability

landscapes exhibit hysteresis (shaded zones in panel I). Different from Box 1 in [107] we focus on the situation where: the unregulated fishing

intensity is higher than the ecological tipping point (panel I gap a) thus taking the system from its pre-fishery abundance (panel II arrow 1) through

a seemingly healthy fishery with little impact on stock size (panel II arrow 2) towards a catastrophic shift resulting in an exhausted fish stock (panel

II arrow 3); the exhaustion of the fish stock is deeper than the societal tipping point (panel I gap b) thus invoking a regulated fishery (panel II arrow

4); the regulated fishing intensity is lower than the ecological tipping point for the fish stock to recover (panel I gap c) thus resulting in a recovery

of the fish stock (panel II arrow 5); the abundance of the recovered fish stock is higher than the societal tipping point (panel I gap d) leading to

deregulation of fishing intensity (panel II arrow 6); then the deregulated fishing intensity is once again higher than the ecological tipping point

leading to an endless limit cycle of overexploitation, regulation, recovery and deregulation. To break this cycle, the societal response to ecological

collapse (panel IV arrow 7) should not only impose a reduction in fishing intensity that allows the fish stock to recover (panel III gap e) but also

reduce or eliminate the hysteresis in the societal response and maintain regulation after stock recovery (panel IV arrow 8) thus creating a

sustainable fishery at high stock levels (panel III point f, panel IV point 9). In Lake Victoria (Box 1), since the introduction of Nile perch, fishing

intensity has increased (going from points 1 to 2 in panel II), risking the collapse of the stock (going from point 2 to 3 in panel II). To avert this

Current Opinion in Environmental Sustainability 2019, 36:85–95 www.sciencedirect.com
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groups, would require specific but potentially simplemodel

adjustments [97].The optimizationtechnique employedin

the BLOOM II model of phytoplankton dynamics is of

particular interest when it comes to novel community

dynamics [98]. Instead of specifying specific species, this

model defines the range of potential species. At any

moment in time, the actual species composition is chosen

from this range based on an optimization goal such as

biomass maximization.

Recognizing the emergence of novel ecosystems will stim-

ulate a new approach to ecosystem management and

modeling. Until recently, the dominant view in ecological

restoration was that we should try to preserve as much of the

biodiversity and natural areas on Earth that developed

during the relatively stable climate of the Holocene and

were still in place at the onset of the great acceleration [99].

Within this paradigm, it seemed logical to focus our eco-

system and landscapemodels on natureas it once was. A full

appreciation of the changes taking place in the Anthro-

pocene has given rise to a radically different view on

ecological restoration [100] and the emergence of the

concept of novel ecosystems [54]. Novel ecosystems are

part of the human environment and niche, including urban,

suburban, and rural areas [101,102], but also arise where

most endemic species have gone extinct, whether or not

due to, but in any case followed by, invasions of exotic

species [103]. In the absence of natural analogs, models

might serve as virtual realities of what might be possible

within novel ecosystems.

Social-ecological dynamics

“We use nature because it’s valuable, but we lose nature
because it’s free” (Pavan Sukhdev)

Rooted in the seminal work of Holling [104], it is now well

established that ecological systems show non-linear

responses to stress factors, with the possibility of alterna-

tive stable states [26]. This notion led to the term

‘ecological resilience’ to denote critical stress levels

beyond which systems undergo a regime shift, which

differs from the concept of ‘engineering resilience’, which

focuses on return time to a single equilibrium [105]. In

water quality management ecological resilience translates

into ‘critical nutrient load’ identification [51,106]. Pro-

cesses in society also show non-linear and hysteretic

responses to stress. Recently, Hughes et al. [107] pointed

out that while human exploitation defines the stress
(Figure 4 Legend Continued) situation, and find a stable social-ecological 

found in societal dynamics (shape of the red isoclines). One such initiative m

effectively removing the role of middlemen in the fishing-boat to filleting fac

harvesting and pricing of the fish to eliminate perverse incentives to fish mo

initiative will only be effective if the sustainable fishing method in itself outco

www.sciencedirect.com 
ecosystems experience, the deteriorated ecosystem state

will be perceived as a stress factor by society (Figure 4).

Taking an example from fisheries, Hughes et al. postulate

that a coupled non-linear social-ecological system may

move through a cycle of four states (panels I and II in

Figure 4). This cycle may repeat itself, or be broken

through prudent management, reshaping the societal

stability landscape (panels III and IV in Figure 4). By

including social-ecological dynamics in our models, and

considering social-ecological resilience, we might be able

to develop more realistic and encompassing management

scenarios for pathways towards sustainability [108].

Hysteretic responses of dynamical systems arise from

positive, self-reinforcing feedback loops. Such feedback

loops can be revealed and studied through feedback

diagrams to identify the dominant system components

and their qualitative interactions (Figure 1 in [109]).

Subsequently, minimal dynamic models can qualitatively

capture specific feedback loops for bifurcation analysis.

Alternatively, more complex models may combine all

interactions considered to be important, as PCLake does

for lake ecosystems. Such integrated models still enable

bifurcation analysis, though with more effort [106]. These

three approaches are also valuable in studying social-

ecological systems. For example, Downing combines

connections across society, fisheries and limnology in

feedback diagrams for Lake Victoria, showing how the

Nile perch fishery may go through the four phases in

Figure 4 [86]. Figure 4 depicts social-ecological interac-

tions arising from minimal dynamic models. Examples of

more complex models that include social-ecological inter-

actions can be found in IMAGE-GNM [110], MARINA

[111] or VEMALA [112]. Society has long been embed-

ded in models as a measure of impact on the environment.

More recently, through the ecosystem service framework,

some models cover the different uses of the environment

by societies. Ultimately, to close the social-ecological

feedback loop, models should incorporate the dynamic

and varying needs of societies that shape these uses of

ecosystem services and drive impacts on the environ-

ment. [113]. Coupled human-environment system mod-

els [114], hybrid modeling that combines a system

dynamics with an agent-based approach [115] and

dynamic modeling of ecosystem services and their

socio-economic valuation [116] seem promising ways to

include those mutual social-ecological dynamics.

As stated in the introduction, Sustainable Development

Goals and Doughnut Economics aim to meet human

needs within the means of the planet, and models are
equilibrium (point 9 in panel IV), responses to stock decline must be

ight be ecolabeling aimed to reduce over fishing of Nile perch by

tory transaction. If successful, this would allow tighter responses in

re when stocks go down. It has been argued however, that such an

mpetes other, unsustainable fishing methods [86].
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an essential tool to capture the mutual causal relations

between human activities and environmental impacts.

While some claim that we are about to model all life

on Earth in a single coherent model [117], we would like

to advocate a view on future model development for

understanding social-ecological systems that is inspired

by biodiversity. Within this view each model develops

and should be judged within the context of its niche. Just

as natural biodiversity is characterized by complementar-

ity and redundancy among coexisting species, we believe

it is useful to maintain a healthy level of model diversity

and to employ the concept of ensemble runs [118] to

allow social-ecological models to compete, show their

fitness and evolve into newer versions [39].

Concluding remarks

“We [do these] things, not because they are easy, but
because they are hard” (John F. Kennedy)

The evolution of models so far illustrates that combining

fields of knowledge is more than an additive process

because combined process dynamics can lead to emer-

gent properties. The question is then: how do we design

satisfactory models to understand the dynamics of even

relatively narrow questions of water quality? We suggest

that a fundamental part of the answer lies in recognizing

the subjectivity of all scientific approaches and methods,

from the questions asked, to the variables chosen to

observe and measure, through a myriad of assumptions

and perceptions. To constrain subjectivities, one can first

provide explicit contexts to the modeling questions: what

time and space scales do they delineate? and then trian-

gulate across fields of study to co-produce the knowledge

behind the model design [119]. The exercise is a process

of transforming multidisciplinarity to transdisciplinarity.

The study by Downing et al. [86] for instance, where a

team of �40 scientists co-designed a shared understand-

ing of the social-ecological system of lake Victoria –

generalized to the level of the whole lake in the post

Nile perch boom era – took time and pushed most, if not

all, contributors outside their comfort zones, into the

comfort zones of their colleagues. The product is neither

a final nor an absolute representation of Lake Victoria’s

social ecological system. It nonetheless represents more

than the sum of its parts, and is a useful building block in

the design of future research questions and models.

It is difficult to predict what tools for water quality

scenario analysis will look like in, say, a decade from

now. America’s politicians, scientists, engineers, workers

and taxpayers were determined and able to put humans

on the Moon, and return them safely to Earth, within the

seven year deadline set by John F. Kennedy in late

1962 [120]. Scenario analysis and computer simulation
Current Opinion in Environmental Sustainability 2019, 36:85–95 
played an important role in this electrifying achievement,

which confronted humans with a picture of the Earth we

live on. This was the start of a growing understanding of

the uniqueness and fragility of system Earth. Here we

make a plea for incorporating eco-evolutionary, novel

ecosystem and social-ecological dynamics in aquatic eco-

system models as part of the contemporary global chal-

lenge to balance human needs with planetary boundaries.

It is an intriguing question whether the scientific method

can handle this added model complexity and can produce

models for scenario analysis which meet the requirements

of model understanding and model uncertainty to make

them suitable as decision support tools. We will never

know if we don’t try.

“It always seems impossible until it’s done” (Nelson

Mandela)
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HR, Brotons L, Cheung WWL, Christensen V, Harhash KA (Eds):
et al.: The methodological assessment report on scenarios and
models of biodiversity and ecosystem services. Bonn, Germany:
Secretariat of the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services; 2016.

19. Wada Y, Gleeson T, Esnault L: Wedge approach to water stress.
Nat Geosci 2014, 7:615.

20. Russi D, ten Brink P, Farmer A, Badura T, Coates D, Förster J,
Kumar R, Davidson N: The economics of ecosystems and
biodiversity for water and wetlands. IEEP; 2013:78.

21. Forbes SA: The Lake as a Microcosm. Bulletin of the Scientific
Association of Peoria, Illinois 1887, 77–87 1925, 15:537-550.

22. Thienemann A: Lebensgemeinschaft und Lebensraum.
Naturwissenschaftliche Wochenschrift 1918, 17:282-290.

23. Lindeman RL: The trophic-dynamic aspect of ecology. Ecology
1942, 23:399-417.

24. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO,
Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E
et al.: Lakes as sentinels of climate change. Limnol Oceanogr
2009, 54:2283-2297.

25. Aylward B, Bandyopadhyay J, Belausteguigotia J, Börkey P,
Cassar A, Meadors L, Saade L, Siebentritt M, Stein R, Tognetti S
et al.: Freshwater Ecosystem Services. In Ecosystems and
human well-being: policy responses, vol. 3. Edited by Chopra K,
Leemans R, Kumar P, Simons H. Island Press; 2005:213-255.

26. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B:
Catastrophic shifts in ecosystems. Nature 2001, 413:591.
www.sciencedirect.com 
27. Vollenweider RA: Advances in defining critical loading levels for
phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di
Idrobiologia, Dott. Marco de Marchi Verbania Pallanza; 1976.

28. MooijWM, de Senerpont DomisLN, Janse JH: Linking species-and
ecosystem-level impacts of climate change in lakes with a
complex and a minimal model. Ecol Model 2009, 220:3011-3020.

29. Scheffer M: Critical transitions in nature and society. Princeton
University Press; 2009.

30. Scheffer M, van den Berg A, Ferrari MD: Migraine strikes as
neuronal excitability reaches a tipping point. PloS One 2013, 8
http://dx.doi.org/10.1371/journal.pone.0072514 e72514.

31. Lahti L, Salojärvi J, Salonen A, Scheffer M, De Vos WM: Tipping
elements in the human intestinal ecosystem. Nat Commun
2014, 5:4344 http://dx.doi.org/10.1038/ncomms5344.

32. Cramer AO, van Borkulo CD, Giltay EJ, van der Maas HL,
Kendler KS, Scheffer M, Borsboom D: Major depression as a
complex dynamic system. PloS one 2016, 11 http://dx.doi.org/
10.1371/journal.pone.0167490 e0167490.

33. Grant WE, Thompson PB: Integrated ecological models:
simulation of socio-cultural constraints on ecological
dynamics. Ecol Modell 1997, 100:43-59.

34. Bouwman AF, Bierkens MFP, Griffioen J, Hefting MM,
Middelburg JJ, Middelkoop H, Slomp CP: Nutrient dynamics,
transfer and retention along the aquatic continuum from land
to ocean: towards integration of ecological and
biogeochemical models. Biogeosciences 2013, 10:1-22 http://
dx.doi.org/10.5194/bg-10-1-2013.

35. Goethals P, Forio M: Advances in Ecological Water System
Modeling: Integration and Leanification as a Basis for Application in
Environmental Management. 2018 http://dx.doi.org/10.3390/
w10091216.

36. DeAngelis DL, Mooij WM: Individual-based modeling of
ecological and evolutionary processes. Annu Rev Ecol Evol Syst
2005, 36:147-168.

37. Ibelings BW, Vonk M, Los HF, van der Molen DT, Mooij WM: Fuzzy
modeling of cyanobacterial surface waterblooms: validation with
NOAA-AVHRR satellite images. Ecol Appl 2003, 13:1456-1472.

38. Jørgensen SE: State-of-the-art of ecological modelling with
emphasis on development of structural dynamic models. Ecol
Model 1999, 120:75-96.

39. Janssen ABG, Arhonditsis GB, Beusen A, Bolding K, Bruce L,
Bruggeman J, Couture R, Downing AS, Elliott JA, Frassl MA et al.:
Exploring, exploiting and evolving diversity of aquatic ecosystem
models: a community perspective. Aquat Ecol 2015, 49:513-548.

40. Janssen ABG, Janse JH, Beusen AH, Chang M, Harrison JA,
Huttunen I, Kong X, Rost J, Teurlincx S, Troost T et al.: How to
model algal blooms in any lake on earth. Curr Opin Environ
Sustain 2019, 36:1-10.

41. Mooij WM, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky PV,
Chitamwebwa DB, Degermendzhy AG, DeAngelis DL, De
Senerpont Domis LN, Downing AS et al.: Challenges and
opportunities for integrating lake ecosystem modelling
approaches. Aquat Ecol 2010, 44:633-667.

42. Van Liere L, Janse JH, Arts GHP: Setting critical nutrient values
for ditches with the eutrophication model PCDitch. Aquat Ecol
2007, 41:443-449.

43. Janssen ABG, Teurlincx S, Beusen AHW, Huijbregts MAJ, Rost J,
Schipper A, Seelen LMS, Mooij WM, Janse JH: PCLake+: a
process-based model to assess water quality of stratified and
non-stratified freshwater lakes worldwide. Subm.

44. Janse JH, van Dam AA, Hes EMA, de Klein JJM, Finlayson M,
Janssen ABG, van Wijk D, Mooij WM, Verhoeven J: Towards a
global model for wetlands ecosystem services. Curr Opin
Environ Sustain 2019, 36:11-19.

45. Kuiper JJ, Verhofstad MJ, Louwers EL, Bakker ES, Brederveld RJ, van
Gerven LP, Janssen ABG, de Klein JJM, Mooij WM: Mowing
submerged macrophytes in shallow lakes with alternative stable
states: battling the good guys? Environ Manage 2017, 59:619-634.
Current Opinion in Environmental Sustainability 2019, 36:85–95

http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0035
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0035
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0035
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0035
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0040
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0040
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0040
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0040
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0040
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0045
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0050
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0050
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0055
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0055
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0055
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0060
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0060
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0060
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0065
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0065
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0065
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0065
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0070
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0070
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0070
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0070
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0075
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0075
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0075
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0075
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0075
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0080
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0080
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0080
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0080
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0085
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0085
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0085
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0090
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0090
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0090
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0090
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0095
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0095
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0100
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0100
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0100
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0105
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0105
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0110
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0110
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0115
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0115
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0120
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0120
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0120
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0120
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0125
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0125
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0125
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0125
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0125
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0130
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0130
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0135
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0135
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0135
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0140
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0140
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0140
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0145
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0145
http://dx.doi.org/10.1371/journal.pone.0072514
http://dx.doi.org/10.1038/ncomms5344
http://dx.doi.org/10.1371/journal.pone.0167490
http://dx.doi.org/10.1371/journal.pone.0167490
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0165
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0165
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0165
http://dx.doi.org/10.5194/bg-10-1-2013
http://dx.doi.org/10.5194/bg-10-1-2013
http://dx.doi.org/10.3390/w10091216
http://dx.doi.org/10.3390/w10091216
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0180
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0180
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0180
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0185
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0185
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0185
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0190
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0190
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0190
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0195
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0195
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0195
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0195
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0200
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0200
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0200
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0200
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0205
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0205
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0205
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0205
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0205
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0210
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0210
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0210
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0220
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0220
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0220
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0220
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0225
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0225
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0225
http://refhub.elsevier.com/S1877-3435(18)30035-6/sbref0225


94 Global water quality
46. Kuiper JJ, Van Altena C, De Ruiter PC, Van Gerven LP, Janse JH,
Mooij WM: Food-web stability signals critical transitions in
temperate shallow lakes. Nat Commun 2015, 6:7727 http://dx.
doi.org/10.1038/ncomms8727.

47. Hu F, Bolding K, Bruggeman J, Jeppesen E, Flindt MR, van
Gerven L, Janse JH, Janssen ABG, Kuiper JJ, Mooij WM, Trolle D:
FABM-PCLake–linking aquatic ecology with hydrodynamics.
Geosci Model Dev 2016, 9:2271-2278.

48. Mooij WM, Brederveld RJ, de Klein JJM, DeAngelis DL,
Downing AS, Faber M, Gerlaf DJ, Matthew RH, ’t Hoen J, Janse JH
et al.: Serving many at once: how a database approach can
create unity in dynamical ecosystem modelling. Environ Model
Softw 2014, 61:266-273.

49. Mooij WM, Janse JH, de Senerpont Domis LN, Hülsmann S,
Ibelings BW: Predicting the effect of climate change on
temperate shallow lakes with the ecosystem model PCLake.
Hydrobiologia 2007, 584:443-454.

50. Kong X, He W, Qin N, Liu W, Yang B, Yang C, Xu F, Mooij WM,
Koelmans AA: Integrated ecological and chemical food web
accumulation modeling explains PAH temporal trends during
regime shifts in a shallow lake. Water Res 2017, 119:73-82.

51. Janssen ABG, de Jager VC, Janse JH, Kong X, Liu S, Ye Q,
Mooij WM: Spatial identification of critical nutrient loads of
large shallow lakes: implications for Lake Taihu (China). Water
Res 2017, 119:276-287.

52. Kong X, He Q, Yang B, He W, Xu F, Janssen ABG, Kuiper JJ, van
Gerven LP, Qin N, Jiang Y et al.: Hydrological regulation drives
regime shifts: evidence from paleolimnology and ecosystem
modelling of a large shallow Chinese lake. Global Change Biol
2017, 23:737-754.

53. Hendry AP: Eco-evolutionary dynamics. Princeton university
press; 2016.

54. Hobbs RJ, Higgs ES, Hall C (Eds): Novel ecosystems: intervening
in the new ecological world order. John Wiley & Sons; 2013 http://
dx.doi.org/10.1002/9781118354186.

55. Donges JF, Winkelmann R, Lucht W, Cornell SE, Dyke JG,
Rockström J, Heitzig J, Schellnhuber HJ: Closing the loop:
reconnecting human dynamics to Earth system science.
Anthropocene Rev 2017, 4:151-157.

56. Bieg C, McCann KS, Fryxell JM: The dynamical implications of
human behaviour on a social-ecological harvesting model.
Theor Ecol 2017, 10:341-354.

57. Darwin C: On the Origin of Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life.
London: Murray; 1859.

58. Hairston Jr NG, Ellner SP, Geber MA, Yoshida T, Fox JA: Rapid
evolution and the convergence of ecological and evolutionary
time. Ecol Lett 2005, 8:1114-1127 http://dx.doi.org/10.1111/
j.1461-0248.2005.00812.x.

59. Ellner SP, Geber MA, Hairston Jr NG: Does rapid evolution
matter? Measuring the rate of contemporary evolution and its
impacts on ecological dynamics. Ecol Lett 2011, 14:603-614.

60. Sterner RW, Elser JJ: Ecological Stoichiometry: The Biology of
Elements from Molecules to the Biosphere. Princeton University
Press; 2002.

61. Teurlincx S, Velthuis M, Seroka D, Govaert L, Donk E, Van de
Waal DB, Declerck SA: Species sorting and stoichiometric
plasticity control community C: P ratio of first-order aquatic
consumers. Ecol Lett 2017, 20:751-760.

62. Velthuis M, de Senerpont Domis LN, Frenken T, Stephan S,
Kazanjian G, Aben R, Hilt S, Kosten S, van Donk E, Van de
Waal DB: Warming advances top-down control and reduces
producer biomass in a freshwater plankton community.
Ecosphere 2017, 8:e01651 http://dx.doi.org/10.1002/ecs2.1651.

63. Tolrian R, Harvell CD (Eds): The Ecology and Evolution of Inducible
Defenses. Princeton University Press; 1999.
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