55 research outputs found

    z~2: An Epoch of Disk Assembly

    Full text link
    We explore the evolution of the internal gas kinematics of star-forming galaxies from the peak of cosmic star-formation at z2z\sim2 to today. Measurements of galaxy rotation velocity VrotV_{rot}, which quantify ordered motions, and gas velocity dispersion σg\sigma_g, which quantify disordered motions, are adopted from the DEEP2 and SIGMA surveys. This sample covers a continuous baseline in redshift from z=2.5z=2.5 to z=0.1z=0.1, spanning 10 Gyrs. At low redshift, nearly all sufficiently massive star-forming galaxies are rotationally supported (Vrot>σgV_{rot}>\sigma_g). By z=2z=2, the percentage of galaxies with rotational support has declined to 50%\% at low stellar mass (1091010M10^{9}-10^{10}\,M_{\odot}) and 70%\% at high stellar mass (10101011M10^{10}-10^{11}M_{\odot}). For Vrot>3σgV_{rot}\,>\,3\,\sigma_g, the percentage drops below 35%\% for all masses. From z=2z\,=\,2 to now, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is mostly due to an average decline in σg\sigma_g by a factor of 3 since a redshift of 2, which is independent of mass. Over the same time period, VrotV_{rot} increases by a factor of 1.5 for low mass systems, but does not evolve for high mass systems. These trends in VrotV_{rot} and σg\sigma_g with time are at a fixed stellar mass and should not be interpreted as evolutionary tracks for galaxy populations. When galaxy populations are linked in time with abundance matching, not only does σg\sigma_g decline with time as before, but VrotV_{rot} strongly increases with time for all galaxy masses. This enhances the evolution in Vrot/σgV_{rot}/\sigma_g. These results indicate that z=2z\,=\,2 is a period of disk assembly, during which the strong rotational support present in today's massive disk galaxies is only just beginning to emerge.Comment: 12 pages, 8 figures, submitted to Ap

    The Epoch of Disk Settling: Z Approximately Equal to 1 to Now

    Get PDF
    We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies over 0.2 < z < 1.2. DEEP2 provides a large sample of high resolution galaxy spectra and dual-band Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties, in order to examine trends. At a fixed stellar mass, galaxies systematically decrease in disturbed motions and increase in rotation velocity and potential well depth with time. The most massive galaxies are the most well-ordered at all times, with higher rotation velocities and less disturbed motions compared to less massive galaxies. We quantify disturbed motions with an integrated gas velocity dispersion (sigma(sub g)), which is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Due to finite slit width and seeing, sigma(sub g) integrates over unresolved velocity gradients which can correspond to non-ordered gas kinematics such as small-scale velocity gradients, gas motions due to star-formation, or super-imposed clumps along the line-of-sight. We compile surveys of galaxy kinematics over 1.2 < z < 3.8 and do not find any trends with redshift, likely because these studies are biased toward the most highly star-forming systems. In summary, over the last approx 8 billion years since z = 1.2, blue galaxies evolve from disturbed to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies always being the most evolved at any time

    Evolution of the Stellar Mass Tully-Fisher Relation in Disk Galaxy Merger Simulations

    Full text link
    There is a large observational scatter toward low velocities in the stellar mass Tully-Fisher relation if disturbed and compact objects are included. However, this scatter can be eliminated if one replaces rotation velocity with S0.5\rm S_{\rm 0.5}, a quantity that includes a velocity dispersion term added in quadrature with the rotation velocity. In this work we use a large suite of hydrodynamic N-body galaxy merger simulations to explore a possible mechanism for creating the observed relations. Using mock observations of the simulations, we test for the presence of observational effects and explore the relationship between S0.5\rm S_{\rm 0.5} and intrinsic properties of the galaxies. We find that galaxy mergers can explain the scatter in the TF as well as the tight S0.5\rm S_{\rm 0.5}-stellar mass relation. Furthermore, S0.5\rm S_{\rm 0.5} is correlated with the total central mass of a galaxy, including contributions due to dark matter.Comment: ApJ accepte

    The Epoch of Disk Settling: z~1 to Now

    Full text link
    We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies with stellar masses ranging 8.0 < log M* (M_Sun) < 10.7 over 0.2<z<1.2. DEEP2 provides galaxy spectra and Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties in order to examine trends in kinematics. We find that at a fixed stellar mass galaxies systematically decrease in disordered motions and increase in rotation velocity and potential well depth with time. Massive galaxies are the most well-ordered at all times examined, with higher rotation velocities and less disordered motions than less massive galaxies. We quantify disordered motions with an integrated gas velocity dispersion corrected for beam smearing (sigma_g). It is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Because both seeing and the width of our spectral slits comprise a significant fraction of the galaxy sizes, sigma_g integrates over velocity gradients on large scales which can correspond to non-ordered gas kinematics. We compile measurements of galaxy kinematics from the literature over 1.2<z<3.8 and do not find any trends with redshift, likely for the most part because these datasets are biased toward the most highly star-forming systems. In summary, over the last ~8 billion years since z=1.2, blue galaxies evolve from disordered to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies being the most evolved at any time.Comment: submitted to ApJ and responded to referee repor

    Strong gravitational lensing probes of the particle nature of dark matter

    Full text link
    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.Comment: Science white paper submitted to the Astro2010 Decadal Cosmology & Fundamental Physics Science Frontier Pane

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics

    Get PDF
    This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z1.58z\sim1.5-8, and to study Type Ia SNe beyond z>1.5z>1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of \sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.Comment: 39 pages, 25 figure

    CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

    Get PDF
    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised version, subsequent to referee repor

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Demographics of Star-forming Galaxies since z ∼ 2.5. I. The <i>UVJ </i>Diagram in CANDELS

    Get PDF
    This is the first in a series of papers examining the demographics of star-forming galaxies at 0.2<z<2.50.2<z<2.5 in CANDELS. We study 9,100 galaxies from GOODS-S and UDS having published values of redshifts, masses, star-formation rates (SFRs), and dust attenuation (AVA_V) derived from UV-optical SED fitting. In agreement with previous works, we find that the UVJUVJ colors of a galaxy are closely correlated with its specific star-formation rate (SSFR) and AVA_V. We define rotated UVJUVJ coordinate axes, termed SSEDS_\mathrm{SED} and CSEDC_\mathrm{SED}, that are parallel and perpendicular to the star-forming sequence and derive a quantitative calibration that predicts SSFR from CSEDC_\mathrm{SED} with an accuracy of ~0.2 dex. SFRs from UV-optical fitting and from UV+IR values based on Spitzer/MIPS 24 μm\mu\mathrm{m} agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star-formation decline and quenching, exhibit "mass-accelerated evolution" ("downsizing"). A population of transition galaxies below the star-forming main sequence is identified. These objects are located between star-forming and quiescent galaxies in UVJUVJ space and have lower AVA_V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and star-forming galaxies are given as a function of mass and redshift.Comment: 36 pages, 26 figures, ApJ accepte
    corecore