74 research outputs found

    The Evolution of Percutaneous Mitral Valve Repair Therapy Lessons Learned and Implications for Patient Selection

    Get PDF
    AbstractMitral regurgitation (MR) is the most common valve disease in the United States. However, a significant number of patients are denied surgery due to increased age, poor ventricular function, or associated comorbidities, putting them at high risk for adverse events. Moreover, the benefit of surgery for MR is unclear in patients with functional (secondary) MR. Recently, percutaneous repair of the mitral valve with a particular device (MitraClip, Abbott, Menlo Park, California) has emerged as a novel therapeutic option for patients with secondary MR or those deemed to be high risk for surgery. We review data from its initial concept through clinical trials and current data available from several registries. We focused on lessons learned regarding adequate patient selection, along with current and future perspectives on the use of device therapy for the treatment of MR

    Vascular risk levels affect the predictive value of platelet reactivity for the occurrence of MACE in patients on clopidogrel. Systematic review and meta-analysis of individual patient data.

    Get PDF
    Prior studies have shown an association between high on-clopidogrel platelet reactivity (PR) and the risk of major adverse cardiovascular events (MACE). However, large intervention trials on PR-tailored treatments have been neutral. The role and usefulness of PR with regard to levels of cardiovascular risk are unclear. We undertook a systematic review and meta-analysis of individual patient data on MACE outcomes (acute coronary syndromes (ACS), ischaemic strokes, and vascular deaths) in relation to PR and its interaction with cardiovascular risk levels. PR was determined using ADP-induced light transmission aggregometry with a primary concentration of 20 ”M ADP. Thirteen prospective studies totaled 6,478 clopidogrel-treated patients who experienced 421 MACE (6.5 %) during a median follow-up of 12 months. The strength of the association between the risk of MACE and PR increased significantly (p=0.04) with the number of risk factors present (age> 75 years, ACS at inclusion, diabetes, and hypertension). No association was detected in patients with no risk factor (p=0.48). In patients presenting one risk factor, only high-PR was associated with an increased risk of MACE (HR 3.2, p=0.001). In patients presenting ≄ 2 risk factors, the increase of risk started from medium-PR (medium-PR: HR=2.9, p=0.0004; high-PR: HR=3.7, p=0.0003). PR allowed the reclassification of 44 % of the total population to a different risk level for the outcome of MACE, mostly in intermediate or high risk patients. In conclusion, the magnitude of the association between PR and MACE risk is strongly dependent on the level of cardiovascular risk faced by patients on clopidogrel

    Statin Efficacy and Safety for Lipid Modification in Apparently Healthy Male Military Aircrew

    Get PDF
    Introduction: Military aircrew men represent an elite group of relatively young, fit, and healthy people. The effectiveness of statin treatment in reducing low-density lipoprotein cholesterol (LDL-C) according to the current National Cholesterol Education Program (NCEP) guidelines, its safety, and compliance in this group of people has not yet been determined. Methods: We prospectively evaluated 84 military aircrew men (mean age 43 Ïź 7 yr) with LDL-C above the current NCEP guidelines. The patients were divided into two groups according to their coronary risk factors: Group 1, LDL-C goal Ïœ 160 mg ⅐ dL ÏȘ1 ; Group 2, LDL-C goal Ïœ 130 mg ⅐ dL ÏȘ1 . All patients received statins in addition to therapeutic lifestyle changes and were followed for a mean of 3 Ïź 1 yr according to a simple flow chart. Lipoprotein levels, liver function tests, creatinine phosphokinase, and subjective adverse reactions were checked periodically. Results: LDL-C significantly declined by 32% (p Ïœ 0.0001) within the first month of treatment and 99% of subjects achieved their LDL-C goal within 114 Ïź 35 d from statin therapy initiation. The Framingham estimated 10-yr coronary risk showed a reduction at an average of 12 mo after statin therapy initiation from a baseline value of 6.54% to 3.95% (p Ï­ 0.003). No subjects were grounded or disqualified from duty, there were no cardiovascular events during follow-up, and compliance to therapy was high [82/84 (98%)]. Discussion: Statin treatment in this highly select, relatively young group of aircrew men significantly and safely lowered LDL-C cholesterol levels

    Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine

    Get PDF
    Objective Enzymatic degradation of the extracellular matrix is known to be powerful regulator of atherosclerosis. However, little is known about the enzymatic regulation of heparan sulfate proteoglycans (HSPGs) during the formation and progression of atherosclerotic plaques. Methods and results Swine were rendered diabetic through streptozotocin injection and hyperlipidemic through a high fat diet. Arterial remodeling and local endothelial shear stress (ESS) were assessed using intravascular ultrasound, coronary angiography and computational fluid dynamics at weeks 23 and 30. Coronary arteries were harvested and 142 arterial subsegments were analyzed using histomorphologic staining, immunostaining and real time PCR. Heparanase staining and activity was increased in arterial segments with low ESS, in lesions with thin cap fibroatheroma (TCFA) morphology and in lesions with severely degraded internal elastic laminae. In addition, heparanase staining co-localized with staining for CD45 and MMP-2 within atherosclerotic plaques. Dual staining with gelatinase zymography and heparanase immunohistochemical staining demonstrated co-localization of matrix metalloprotease activity with heparanase staining. A heparanase enzymatic activity assay demonstrated increased activity in TCFA lesions, subsegments with low ESS and in macrophages treated with oxidized LDL or angiotensin II. Conclusions Taken together, our results support a critical role for heparanase in the development of vulnerable plaques and suggest a novel therapeutic target for the treatment of atherosclerosis.Novartis (Firm)Boston Scientific CorporationNational Institutes of Health (U.S.) (Grant R01 GM49039

    Augmented Expression and Activity of Extracellular Matrix-Degrading Enzymes in Regions of Low Endothelial Shear Stress Colocalize With Coronary Atheromata With Thin Fibrous Caps in Pigs

    Get PDF
    Background—The molecular mechanisms that determine the localized formation of thin-capped atheromata in the coronary arteries remain unknown. This study tested the hypothesis that low endothelial shear stress augments the expression of matrix-degrading proteases and thereby promotes the formation of thin-capped atheromata. : Methods and Results—Intravascular ultrasound–based, geometrically correct 3-dimensional reconstruction of the coronary arteries of 12 swine was performed in vivo 23 weeks after initiation of diabetes mellitus and a hyperlipidemic diet. Local endothelial shear stress was calculated in plaque-free subsegments of interest (n=142) with computational fluid dynamics. At week 30, the coronary arteries (n=31) were harvested and the same subsegments were identified. The messenger RNA and protein expression and elastolytic activity of selected elastases and their endogenous inhibitors were assessed. Subsegments with low preceding endothelial shear stress at week 23 showed reduced endothelial coverage, enhanced lipid accumulation, and intense infiltration of activated inflammatory cells at week 30. These lesions showed increased expression of messenger RNAs encoding matrix metalloproteinase-2, -9, and -12, and cathepsins K and S relative to their endogenous inhibitors and increased elastolytic activity. Expression of these enzymes correlated positively with the severity of internal elastic lamina fragmentation. Thin-capped atheromata developed in regions with lower preceding endothelial shear stress and had reduced endothelial coverage, intense lipid and inflammatory cell accumulation, enhanced messenger RNA expression and elastolytic activity of MMPs and cathepsins, and severe internal elastic lamina fragmentation. : Conclusions—Low endothelial shear stress induces endothelial discontinuity and accumulation of activated inflammatory cells, thereby augmenting the expression and activity of elastases in the intima and shifting the balance with their inhibitors toward matrix breakdown. Our results provide new insight into the mechanisms of regional formation of plaques with thin fibrous caps.Novartis Pharmaceuticals CorporationBoston Scientific CorporationHellenic Heart FoundationHellenic Atherosclerosis SocietyAlexander S. Onassis Public Benefit FoundationPropondis FoundationHellenic Harvard FoundationA.G. Leventis FoundationPhilip Morris International. External Research ProgramAmerican Heart Association (Scientist Development Grant)National Institutes of Health (U.S.) (Grant NIHR01 GM49039

    Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

    Get PDF
    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Cholinergic mechanisms in depression

    Full text link
    Evidence supporting a cholinergic hypothesis of depression is presented. First, cholinergic overdrive produces behavioral, neuroendocrine, and polysomnographic features of melancholia, and melancholics exhibit state-independent supersensitivity to cholinergic overdrive. Drugs inducing up-regulation and supersensitivity of cholinergic systems produce behavioral, polysomnographic, and neuroendocrine effects of melancholia when withdrawn. These observations also implicate cholinergic system supersensitivity as a factor in the pathophysiology of certain affective disorders. Cholinergic and monoaminergic mechanisms reciprocally regulate drive-reduction, and substances of abuse either activate monoaminergic networks or antagonize cholinergic systems. These points are consistent with the hypothesis that dynamic interaction between cholinergic and monoaminergic systems is involved in the regulation of mood and affect. Finally, antimuscarinic agents have antidepressant effects. Thus, the hypothesis that supersensitivity of cholinergic systems is involved in the pathophysiology of affective disorders is supported by several lines of evidence. This evidence is reviewed; directions for future research and promising methods of investigation are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26059/1/0000133.pd

    The Impact of Novel Anti-Diabetic Medications on CV Outcomes: A New Therapeutic Horizon for Diabetic and Non-Diabetic Cardiac Patients

    No full text
    It is estimated that in the past two decades the number of patients diagnosed with diabetes mellites (DM) has doubled. Despite significant progress in the treatment of cardiovascular disease (CVD), including novel anti-platelet agents, effective lipid-lowering medications, and advanced revascularization techniques, patients with DM still are least twice as likely to die of cardiovascular causes compared with their non-diabetic counterparts, and current guidelines define patients with DM at the highest risk for atherosclerotic cardiovascular disease and major adverse cardiovascular events (MACE). Over the last few years, there has been a breakthrough in anti-diabetic therapeutics, as two novel anti-diabetic classes have demonstrated cardiovascular benefit with consistently reduced MACE, and for some agents, also improvement in heart failure status as well as reduced cardiovascular and all-cause mortality. These include the sodium-glucose cotransporter-2 inhibitors and the glucagon-like peptide-1 receptor agonists. The benefits of these medications are thought to be derived not only from their anti-diabetic effect but also from additional mechanisms. The purpose of this review is to provide the everyday clinician a detailed review of the various agents within each class with regard to their specific characteristics and the effects on MACE and cardiovascular outcomes

    The Impact of Novel Anti-Diabetic Medications on CV Outcomes: A New Therapeutic Horizon for Diabetic and Non-Diabetic Cardiac Patients

    No full text
    It is estimated that in the past two decades the number of patients diagnosed with diabetes mellites (DM) has doubled. Despite significant progress in the treatment of cardiovascular disease (CVD), including novel anti-platelet agents, effective lipid-lowering medications, and advanced revascularization techniques, patients with DM still are least twice as likely to die of cardiovascular causes compared with their non-diabetic counterparts, and current guidelines define patients with DM at the highest risk for atherosclerotic cardiovascular disease and major adverse cardiovascular events (MACE). Over the last few years, there has been a breakthrough in anti-diabetic therapeutics, as two novel anti-diabetic classes have demonstrated cardiovascular benefit with consistently reduced MACE, and for some agents, also improvement in heart failure status as well as reduced cardiovascular and all-cause mortality. These include the sodium-glucose cotransporter-2 inhibitors and the glucagon-like peptide-1 receptor agonists. The benefits of these medications are thought to be derived not only from their anti-diabetic effect but also from additional mechanisms. The purpose of this review is to provide the everyday clinician a detailed review of the various agents within each class with regard to their specific characteristics and the effects on MACE and cardiovascular outcomes
    • 

    corecore