120 research outputs found
Diluted II-VI Oxide Semiconductors with Multiple Band Gaps
We report the realization of a new multi-band-gap semiconductor. The highly
mismatched alloy Zn1-yMnyOxTe1-x has been synthesized using the combination of
oxygen ion implantation and pulsed laser melting. Incorporation of small
quantities of isovalent oxygen leads to the formation of a narrow,
oxygen-derived band of extended states located within the band gap of the
Zn1-yMnyTe host. When only 1.3% of Te atoms is replaced with oxygen in a
Zn0.88Mn0.12Te crystal (with band gap of 2.32 eV) the resulting band structure
consists of two direct band gaps with interband transitions at ~1.77 eV and 2.7
eV. This remarkable modification of the band structure is well described by the
band anticrossing model in which the interactions between the oxygen-derived
band and the conduction band are considered. With multiple band gaps that fall
within the solar energy spectrum, Zn1-yMnyOxTe1-x is a material perfectly
satisfying the conditions for single-junction photovoltaics with the potential
for power conversion efficiencies surpassing 50%.Comment: 12 pages, 4 figure
Recommended from our members
Local vibrational modes of Se-H complexes in AlSb
Using infrared spectroscopy the authors have observed local vibrational modes (LVMs) arising from Se-H complexes in AlSb. At liquid-helium temperatures, hydrogenated AlSb:Se samples have three stretch mode peaks at 1,606.3, 1,608.6, and 1,615.7 cm{sup {minus}1}, whereas deuterated samples have only one peak at 1,173.4 cm{sup {minus}1}. The anomalous splitting of the se-H stretch mode may be explained by a resonance between the stretch mode and two multi-phonon modes. As the temperature or pressure is increased, the stretch mode and multi-phonon modes show anti-crossing behavior
Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS
The Large Synoptic Survey Telescope (LSST) will be a large, wide-field
ground-based system designed to obtain, starting in 2015, multiple images of
the sky that is visible from Cerro Pachon in Northern Chile. About 90% of the
observing time will be devoted to a deep-wide-fast survey mode which will
observe a 20,000 deg region about 1000 times during the anticipated 10
years of operations (distributed over six bands, ). Each 30-second long
visit will deliver 5 depth for point sources of on average.
The co-added map will be about 3 magnitudes deeper, and will include 10 billion
galaxies and a similar number of stars. We discuss various measurements that
will be automatically performed for these 20 billion sources, and how they can
be used for classification and determination of source physical and other
properties. We provide a few classification examples based on SDSS data, such
as color classification of stars, color-spatial proximity search for wide-angle
binary stars, orbital-color classification of asteroid families, and the
recognition of main Galaxy components based on the distribution of stars in the
position-metallicity-kinematics space. Guided by these examples, we anticipate
that two grand classification challenges for LSST will be 1) rapid and robust
classification of sources detected in difference images, and 2) {\it
simultaneous} treatment of diverse astrometric and photometric time series
measurements for an unprecedentedly large number of objects.Comment: Presented at the "Classification and Discovery in Large Astronomical
Surveys" meeting, Ringberg Castle, 14-17 October, 200
Recommended from our members
Highly Mismatched Alloys for Intermediate Band Solar Cells
It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Synthesis and optical properties of II-O-VI highly mismatched alloys
We have synthesized ternary and quaternary diluted II-VI oxides using the combination of O ion implantation and pulsed laser melting. CdO{sub x}Te{sub 1-x} thin films with x up to 0.015, and the energy gap reduced by 150 meV were formed by O{sup +}-implantation in CdTe followed by pulsed laser melting. Quaternary Cd{sub 0.6}Mn{sub 0.4}O{sub x}Te{sub 1-x} and Zn{sub 0.88}Mn{sub 0.12}O{sub x}Te{sub 1-x} with mole fraction of incorporated O as high as 0.03 were also formed. The enhanced O incorporation in Mn-containing alloys is believed to be due to the formation of relatively strong Mn-O bonds. Optical transitions associated with the lower (E{sub -}) and upper (E{sub +}) conduction subbands resulting from the anticrossing interaction between the localized O states and the extended conduction states of the host are clearly observed in these quaternary diluted II-VI oxides. These alloys fulfill the criteria for a multiband semiconductor that has been proposed as a material for making high efficiency, single-junction solar cells
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
- …