599 research outputs found

    Robustness of Decoherence-Free Subspaces for Quantum Computation

    Full text link
    It was shown recently [D.A. Lidar et al., Phys. Rev. Lett. 81, 2594 (1998)] that within the framework of the semigroup Markovian master equation, decoherence-free (DF) subspaces exist which are stable to first order in time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular, it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum memory applications. For quantum computation, however, the stability result does not extend beyond the first order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with quantum error correcting codes.Comment: 16 pages, no figures. Several changes, including a clarification of the derivation of the Lindblad equation from the operator sum representation. To appear in Phys. Rev

    Point sets on the sphere S2\mathbb{S}^2 with small spherical cap discrepancy

    Full text link
    In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N1/2N^{-1/2}. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Tensor polarization in elastic electron-deuteron scattering in the momentum transfer range 3.8≤Q≤4.6 fm-1

    Get PDF
    The tensor polarization of the recoil deuteron in elastic electron-deuteron scattering has been measured at the Bates Linear Accelerator Center at three values of four-momentum transfer Q=3.78, 4.22, and 4.62 fm-1, corresponding to incident electron energies of 653, 755, and 853 MeV. The scattered electrons and the recoil deuterons were detected in coincidence. The recoil deuterons were transported to a liquid hydrogen target to undergo a second scattering. The angular distribution of the d→-p scattering was measured using a polarimeter. The polarimeter was calibrated in an auxiliary experiment using a polarized deuteron beam at the Laboratoire National Saturne. A Monte Carlo procedure was used to generate interpolated calibration data because the energy spread in the deuteron energies in the Bates experiment spanned the range of deuteron energies in the calibration experiment. The extracted values of t20 are compared to predictions of different theoretical models of the electromagnetic form factors of the deuteron: nonrelativistic and relativistic nucleon-meson dynamics, Skyrme model, quark models, and perturbative quantum chromodynamics. Along with the world data the structure functions A(Q) and B(Q) are used to separate the charge monopole and charge quadrupole form factors of the deuteron. A node in the charge monopole form factor is observed at Q=4.39±0.16 fm-1

    Measurement of tensor polarization in elastic electron-deuteron scattering in the momentum-transfer range 3.8≤q≤4.6 fm-1

    Get PDF
    The tensor polarization t20 of the recoil deuteron in elastic e-d scattering has been measured for three values of four-momentum transfer, q=3.78, 4.22, and 4.62 fm-1. The data have been used to locate the first node in the charge monopole form factor of the deuteron at q=4.39±0.16 fm-1. The results for t20 are in reasonable agreement with expectations based on the nucleon-meson description of nuclear dynamic

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore