2,162 research outputs found

    Applications of indocyanine green in robotic urology

    Get PDF
    Peer reviewedPublisher PD

    Dehydrated Human Amnion/Chorion Membrane Allograft Nerve Wrap Around the Prostatic Neurovascular Bundle Accelerates Early Return to Continence and Potency Following Robot-assisted Radical Prostatectomy: Propensity Score–matched Analysis

    Get PDF
    Abstract We present a propensity-matched analysis of patients undergoing placement of dehydrated human amnion/chorion membrane (dHACM) around the neurovascular bundle (NVB) during nerve-sparing (NS) robot-assisted laparoscopic prostatectomy (RARP). From March 2013 to July 2014, 58 patients who were preoperatively potent (Sexual Health Inventory for Men [SHIM] score >19) and continent (no pads) underwent full NS RARP. Postoperative outcomes were analyzed between propensity-matched graft and no-graft groups, including time to return to continence, potency, and biochemical recurrence. dHACM use was not associated with increased operative time or blood loss or negative oncologic outcomes ( p >0.500). Continence at 8 wk returned in 81.0% of the dHACM group and 74.1% of the no-dHACM group ( p =0.373). Mean time to continence was enhanced in group 1 patients (1.21 mo) versus (1.83 mo; p =0.033). Potency at 8 wk returned in 65.5% of the dHACM patients and 51.7% of the no-dHACM group ( p =0.132). Mean time to potency was enhanced in group 1, (1.34 mo), compared to group 2 (3.39 mo; p =0.007). Graft placement enhanced mean time to continence and potency. Postoperative SHIM scores were higher in the dHACM group at maximal follow-up (mean score 16.2 vs 9.1). dHACM allograft use appears to hasten the early return of continence and potency in patients following RARP

    Spin-axis relaxation in spin-exchange collisions of alkali atoms

    Get PDF
    We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calculated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van-der-Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments. All the experimental data is consistent with a simple and physically plausible scaling law for the spin-axis coupling coefficients.Comment: text+1 figur

    Genome-wide screening for DNA variants associated with reading and language traits

    Get PDF
    This research was funded by: Max Planck Society, the University of St Andrews - Grant Number: 018696, US National Institutes of Health - Grant Number: P50 HD027802, Wellcome Trust - Grant Number: 090532/Z/09/Z, and Medical Research Council Hub Grant Grant Number: G0900747 91070Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome‐wide association scan (GWAS) meta‐analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading‐ and language‐related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P ≈ 10–7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on‐going international efforts to identify genes contributing to reading and language skills.Publisher PDFPeer reviewe

    The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 321-328, doi:10.1007/s00338-010-0697-z.Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was non-linear. A statistically significant decrease in calcification was only detected between Ωar = < 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these 3 variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.This study was supported by NSF award 0648157 (Cohen and McCorkle), NSF 1041106 (Cohen, McCorkle), NSF 1041052 (de Putron), the VITA foundation (de Putron), WHOI Ocean Life Institute (Cohen), PEI and EEB Departments at Princeton University, Bill and Anne Charrier, and the Anthony B. Evnin, Dean’s Roundtable, and Edmund Hayes Sr. senior thesis funds (Dillon)

    Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung

    Get PDF
    OBJECTIVES:: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN:: Experimental animal study. SETTING:: International synchrotron radiation laboratory. SUBJECTS:: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS:: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS:: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS:: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage

    Polymer Crystallization in 25 nm Spheres

    Full text link
    Crystallization within the discrete spheres of a block copolymer mesophase was studied by time-resolved x-ray scattering. The cubic packing of microdomains, established by self-assembly in the melt, is preserved throughout crystallization by strong interblock segregation even though the amorphous matrix block is well above its glass transition temperature. Homogeneous nucleation within each sphere yields isothermal crystallizations which follow first-order kinetics, contrasting with the sigmoidal kinetics normally exhibited in the quiescent crystallization of bulk polymers.Comment: accepted for publication in Physical Review Letters, 2/28/2000; scheduled for 5/1/2000 issu

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a Targeted Antimicrobial Agent against This Emerging Pathogen

    Get PDF
    A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence
    corecore