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Applications of indocyanine green in robotic urology
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Abstract Indocyanine green is a fluorescent molecule with

wide ranging applications in minimally invasive urological

surgery. This article explores the utility of ICG assisted

intraoperative fluorescence in robotic urology.
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Indocyanine green (ICG) is a fluorescent molecule [1]. Inci-

dent infrared light of wavelength 780 nm provokes

detectable photon emission at 820–830 nm [1]. Alongside a

high definition camera and software imposed pseudo-colour,

intravenously delivered ICG may be used to identify vessel

perfusion and differentiate tissue density [2–4]. Indocyanine

green was initially developed in the 1955 by Kodak photog-

raphy, and received FDA approval in 1959 [5, 6]. Indocyanine

green has a favourable safety profile, with an adverse event

rate of 0.34 % including nausea, vomiting, and rarely shock [1

in 300,000]) [7]. The use of ICG is established in ophthal-

mology, dermatology, and cardiology for vascular identifi-

cation [8, 9]. This articlewill summarise the current and future

applications of ICG in robotic urology, with the da Vinci�

robot (dVSS), (Intuitive Surgical Systems, Sunnyvale, CA,

USA) with emphasis placed on the intraoperative identifica-

tion of vascular and oncological tissue. Notably, ICG is a

cheap consumable, and infrared endoscopic equipment is

widely available in contemporary dVSS systems (Firefly� in

the DaVinci Xi).

A historical perspective of intraoperative imaging with

fluorescent dye is necessary to describe intra-opera-

tive imaging advances from the 20th century applicable to

modern robotic surgery. In 1947, seminal workwas conducted

by neurosurgeonGeorgeMoore at theUniversity ofMinnesota

Medical School. Moore described the use of fluorescein, a

fluorophore, to identify intracranial neoplastic tissue in the

journal Science [10]. By 1948, Moore had performed a case

series of 46 patients with mixed intracranial tumours [11].

Intraoperatively, he injected tumour with dye, identifying 44

tumours (96 %) correctly asmalignant [11].Moorewent so far

as to describe resection of remaining tissue based on fluores-

cent activity, thereby intraoperatively resecting positive sur-

gical margins [11]. He also radiolabelled diiodofluorescein

with iodine isotope 131 to detect gamma radiation from the

accumulation of dye at malignant tissue [11].

Complex pelvic surgery has been revolutionised by the

dVSS [12]. Wide adoption of the dVSS for radical

prostatectomy and partial nephrectomy has followed, due

to enhanced degrees of movement from the robotic wrist,

tremor reduction, enhanced ergonomics, greater magnifi-

cation, and the ability to operate in a closed anatomical

space. Improved surgical recovery has been realised due to

the minimal access approach, reductions in blood loss and

a favourable learning curve, compared with the conven-

tional laparoscopic technique [13–15]. Robotic outcomes

are comparable to laparoscopic approaches and superior to

open techniques [13–15]. Clinician and patient preference

for use of the dVSS in performing robotic partial

nephrectomy and prostatectomy are reflected clearly in the

increasing caseload undertaken using the platform, with

hundreds of centres now offering robotic prostatectomy

worldwide [16]. Despite advances in robotics such as
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virtual reality simulation and adaptations to instruments,

the basic configuration of the dVSS has remained relativ-

ley unchanged. Image guided surgery is well established in

urology, such as x-ray guided fluoroscopic investigation of

the urethra, bladder, ureter and reno-ureteric junction [17].

The combination of fluorescent intraoperative imaging and

robotic surgery is a logical progression in peri-operative

tissue visualisation. The fusion of minimally invasive

surgery and localised imaging has been described in the

identification of sentinel lymph nodes and renal cancer

[18, 19], super selective arterial clamping for nephron

sparing [20], and precise dissection of the prostatic neu-

rovascular bundle [21].

In healthy renal parenchyma the transporter bilitranslocase

binds ICG and healthy tissue appears isofluorescent when

perfusedwith ICG laden blood [22]. Renal tumour is deficient

in bilitranslocase and therefore appears hypofluorescent [19].

Tobis et al. noted hypofluorescent renal tumours in the pres-

ence of ICG during robotic partial nephrectomy (RAPN). The

investigators were guided by ICG in selective arterial

clamping of a handful of cases. Following this, Manny et al.

subsequently calculated hypofluorescent tissue had a sensi-

tivity of 84 % and positive predictive value of 87 % for

malignant renal lesions in 100 RAPN cases [23]. Borofsky

et al. thendescribed super selective renal artery clamping in27

patients undergoing partial nephrectomy, with ICG,

thus avoiding clamps to healthy renal parenchyma. Maximal

loss of eGFR at 3 month follow-up was 1.6 versus 14.0 % in

the non-ICG study arm [24]. Bjurlin et al. also reported a

comparatively favourable 6.2 % decrease in glomerular fil-

tration rate at 2 weeks postoperatively through the use of

super-selective arterial clamping assisted with ICG [20, 25].

Patients undergoing super selective clamping showed signif-

icantly improved renal function at follow-up, however, these

studies were underpowered and did not examine the impact of

the technology upon intraoperative decision making [25].

Robot-assisted radical prostatectomy (RARP) may be

supplemented by ICG imaging to identify the prostatic

neurovascular bundle. In 2015, Patel et al. at demonstrated

30 % of prostatic neurovascular dissections were revised

during nerve sparing RARP [21]. Given the degree of nerve

spare correlates to functional outcomes [26], ICG holds

promise for improving post-prostatectomy continence and

erectile function. Robot-assisted sentinel node harvest is

performed at RARP to determine metastatic nodal status. A

hybrid fluorescent ICG radiotracer was optimised to detect

sentinel lymph nodes in robot-assisted lymph node dissec-

tion, and improved in vivo identification through fluores-

cence to 93.5 % versus 50.0 % in non-optimised samples

(n = 38; p = 0.005) [18]. In another series, robotic ICG

assisted sentinel node harvest during RARP yielded a sen-

sitivity of 100 % and negative predictive value of 100 %

(n = 50), however, this method was non-specific. With

larger sample sizes, it is likely the diagnostic coefficients

would fall to below 100 % [27]. In spite of this, the potential

utility of ICG for metastatic node detection and differentia-

tion of oncological tissue remains encouraging.

Early work byMoore in revising surgicalmargins based on

fluorescence, and the radiolabelling of fluorescent dye to

localise oncological tissue was visionary. Recent technolog-

ical advances in cancer biomarkers and immunology have

prompted the hybridisation of ICG with cancer selective

ligands, to localise tumour by fluorescence. Prostate specific

membrane antigen (PSMA) is upregulated in prostate cancer

by 100 to 1000-fold [28, 29]. Although at the pre-clinical

stage, ICG bound PSMA-ligand was demonstrated to detect

PSMA positive prostatic tumours in mice by Nakajima et al.

using the humanised monoclonal antibody specific to PSMA,

J591 [30]. Notably the J591 antibody has been delivered in

several human clinical trials at high doses with a favourable

safety profile [31–33]. In mice with human cell line prostate

cancer, tumour was visually identifiable through fluorescence

from 1 to 10 days after administration [30]. The accurate

identification of previously indiscernible cancer tissue should

be expected to transform positive surgical margin rates, and

delay biochemical recurrence in prostate cancer. Similar

advances in renal and bladder cancer immunology may also

allow transfer of the technology to treat these pathologies.

In summary ICG combined with the dVSS is an incumbent

game changer, and has been described as a ‘‘hammer looking

for a nail’’ [25]. Evidence is emerging that ICG is useful in the

robotic surgeon’s arsenal and yields tangible clinical benefit

from selective arterial clamping in RAPN. Well-designed

randomised controlled trials are urgently needed to quantify

improvements in outcomes following ICG-augmented robotic

procedures such as sentinel node excision, and identification of

oncological tissue. It remains to be proven whether ICG brings

small, incremental procedure-specific advances, or clinically

substantial benefits to overall survival and functional recovery

to these procedures. A revolutionary step in operative imaging

though the labelling of fluorescent molecules to enhance en

bloc tumour resection was espoused nearly 70 years ago by

neurosurgeon Dr George Moore. Although at the pre-clinical

stage, it is onlyamatter of timebeforeMoore’spioneeringwork

is assimilated into routine robotic surgical practice.
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