181 research outputs found
NMR and NQR Fluctuation Effects in Layered Superconductors
We study the effect of thermal fluctuations of the s-wave order parameter of
a quasi two dimensional superconductor on the nuclear spin relaxation rate near
the transition temperature Tc. We consider both the effects of the amplitude
fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations
in weakly coupled layered superconductors. In the treatment of the amplitude
fluctuations we employ the Gaussian approximation and evaluate the longitudinal
relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair
breaking effects, using the static pair fluctuation propagator D. The increase
in 1/T1 due to pair breaking in D is overcompensated by the decrease arising
from the single particle Green's functions. The result is a strong effect on
1/T1 for even a small amount of pair breaking. The phase fluctuations are
described in terms of dynamical BKT excitations in the form of pancake
vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field
fluctuations caused by the translational motion of VA excitations on 1/T1 and
on the transverse relaxation rate 1/T2 on both sides of the BKT transitation
temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly
on the diffusion constant that governs the motion of free and bound vortices as
well as the annihilation of VA pairs. We discuss the relaxation rates for real
multilayer systems where the diffusion constant can be small and thus increase
the lifetime of a VA pair, leading to an enhancement of the rates. We also
discuss in some detail the experimental feasibility of observing the effects of
amplitude fluctuations in layered s-wave superconductors such as the
dichalcogenides and the effects of phase fluctuations in s- or d-wave
superconductors such as the layered cuprates.Comment: 38 pages, 12 figure
On the perturbative expansion of a quantum field theory around a topological sector
The idea of treating general relativistic theories in a perturbative
expansion around a topological theory has been recently put forward in the
quantum gravity literature. Here we investigate the viability of this idea, by
applying it to conventional Yang--Mills theory on flat spacetime. We find that
the expansion around the topological theory coincides with the usual expansion
around the abelian theory, though the equivalence is non-trivial. In this
context, the technique appears therefore to be viable, but not to bring
particularly new insights. Some implications for gravity are discussed.Comment: 7 page
Nucleus-mediated spin-flip transitions in GaAs quantum dots
Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the
possibilities to manipulate spin states in the dots. We present here
estimations of inelastic spin-flip rates mediated by hyperfine interaction with
nuclei. Under general assumptions the nucleus mediated rate is proportional to
the phonon relaxation rate for the corresponding non-spin-flip transitions. The
rate can be accelerated in the vicinity of a singlet-triplet excited states
crossing. The small proportionality coefficient depends inversely on the number
of nuclei in the quantum dot. We compare our results with known mechanisms of
spin-flip in quantum dot.Comment: RevTex 4 pages, 1 figure, submitted to Phys. Rev.
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan
Psychosocial Treatment of Children in Foster Care: A Review
A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children
The Dynamics of Brane-World Cosmological Models
Brane-world cosmology is motivated by recent developments in string/M-theory
and offers a new perspective on the hierarchy problem. In the brane-world
scenario, our Universe is a four-dimensional subspace or {\em brane} embedded
in a higher-dimensional {\em bulk} spacetime. Ordinary matter fields are
confined to the brane while the gravitational field can also propagate in the
bulk, leading to modifications of Einstein's theory of general relativity at
high energies. In particular, the Randall-Sundrum-type models are
self-consistent and simple and allow for an investigation of the essential
non-linear gravitational dynamics. The governing field equations induced on the
brane differ from the general relativistic equations in that there are nonlocal
effects from the free gravitational field in the bulk, transmitted via the
projection of the bulk Weyl tensor, and the local quadratic energy-momentum
corrections, which are significant in the high-energy regime close to the
initial singularity. In this review we discuss the asymptotic dynamical
evolution of spatially homogeneous brane-world cosmological models containing
both a perfect fluid and a scalar field close to the initial singularity. Using
dynamical systems techniques it is found that, for models with a physically
relevant equation of state, an isotropic singularity is a past-attractor in all
orthogonal spatially homogeneous models (including Bianchi type IX models). In
addition, we describe the dynamics in a class of inhomogeneous brane-world
models, and show that these models also have an isotropic initial singularity.
These results provide support for the conjecture that typically the initial
cosmological singularity is isotropic in brane-world cosmology.Comment: Einstein Centennial Review Article: to appear in CJ
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
- …