575 research outputs found
Exact two-particle eigenstates in partially reduced QED
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. It
is shown that exact few-fermion eigenstates of the resulting Hamiltonian can be
obtained in the canonical equal-time formalism for the case where there are no
free photons. These eigenstates lead to two- and three-body Dirac-like
equations with electromagnetic interactions. Perturbative and some numerical
solutions of the two-body equations are presented for positronium and
muonium-like systems, for various strengths of the coupling.Comment: 33 pages, LaTex 2.09, 4 figures in EPS forma
Onset of fluidization in vertically shaken granular material
When granular material is shaken vertically one observes convection, surface
fluidization, spontaneous heap formation and other effects. There is a
controversial discussion in literature whether there exists a threshold for the
Froude number below which these effects cannot be
observed anymore. By means of theoretical analysis and computer simulation we
find that there is no such single threshold. Instead we propose a modified
criterion which coincides with critical Froude number for small
driving frequency .Comment: 7 pages, 5 figure
Phenomenological glass model for vibratory granular compaction
A model for weakly excited granular media is derived by combining the free
volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the
phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem.
Phys. 43, 139 (1965)]. This is made possible by relating the granular
excitation parameter \Gamma, defined as the peak acceleration of the driving
pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The
resulting master equation is formally identical to that of Bouchaud's trap
model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results
are shown to compare favourably with a range of known experimental behaviour.
This includes the logarithmic densification and power spectrum of fluctuations
under constant \eta, the annealing curve when \eta is varied cyclically in
time, and memory effects observed for a discontinuous shift in \eta. Finally,
we discuss the physical interpretation of the model parameters and suggest
further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR
Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers
Motivated by recent advances in the investigation of fluctuation-driven
ratchets and flows in excited granular media, we have carried out experimental
and simulational studies to explore the horizontal transport of granular
particles in a vertically vibrated system whose base has a sawtooth-shaped
profile. The resulting material flow exhibits novel collective behavior, both
as a function of the number of layers of particles and the driving frequency;
in particular, under certain conditions, increasing the layer thickness leads
to a reversal of the current, while the onset of transport as a function of
frequency occurs gradually in a manner reminiscent of a phase transition. Our
experimental findings are interpreted here with the help of extensive, event
driven Molecular Dynamics simulations. In addition to reproducing the
experimental results, the simulations revealed that the current may be reversed
as a function of the driving frequency as well. We also give details about the
simulations so that similar numerical studies can be carried out in a more
straightforward manner in the future.Comment: 12 pages, 18 figure
Dynamic screening in solar and stellar nuclear reactions
In the hot, dense plasma of solar and stellar interiors, the Coulomb
interaction is screened by the surrounding plasma. Although the standard
Salpeter approximation for static screening is widely accepted and used in
stellar modeling, the question of dynamic screening has been revisited. In
particular, Shaviv and Shaviv apply the techniques of molecular dynamics to the
conditions in the solar core in order to numerically determine the dynamic
screening effect. By directly calculating the motion of ions and electrons due
to Coulomb interactions, they compute the effect of screening without the
mean-field assumption inherent in the Salpeter approximation. Here we reproduce
their numerical analysis of the screening energy in the plasma of the solar
core and conclude that the effects of dynamic screening are relevant and should
be included in the treatment of the plasma, especially in the computation of
stellar nuclear reaction rates.Comment: Astrophysics and Space Science, Special Issue Solar & Stellar
Modelling Corrected sign error. Now consistent with final published versio
Circular orbits of corotating binary black holes: comparison between analytical and numerical results
We compare recent numerical results, obtained within a ``helical Killing
vector'' (HKV) approach, on circular orbits of corotating binary black holes to
the analytical predictions made by the effective one body (EOB) method (which
has been recently extended to the case of spinning bodies). On the scale of the
differences between the results obtained by different numerical methods, we
find good agreement between numerical data and analytical predictions for
several invariant functions describing the dynamical properties of circular
orbits. This agreement is robust against the post-Newtonian accuracy used for
the analytical estimates, as well as under choices of resummation method for
the EOB ``effective potential'', and gets better as one uses a higher
post-Newtonian accuracy. These findings open the way to a significant
``merging'' of analytical and numerical methods, i.e. to matching an EOB-based
analytical description of the (early and late) inspiral, up to the beginning of
the plunge, to a numerical description of the plunge and merger. We illustrate
also the ``flexibility'' of the EOB approach, i.e. the possibility of
determining some ``best fit'' values for the analytical parameters by
comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages,
6 figure
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
- âŚ