74 research outputs found

    How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men

    Get PDF
    Tumours in rodent and human colon share many histological and genetic features. To know if rodent models of colon carcinogenesis are good predictors of chemopreventive efficacy in humans, we made a meta-analysis of aspirin, beta-carotene, calcium, and wheat bran studies. Controlled intervention studies of adenoma recurrence in human volunteers were compared with chemoprevention studies of carcinogen-induced tumours in rats, and of polyps in Min (Apc(+/-)) mice: 6714 volunteers, 3911 rats and 458 mice were included in the meta-analyses. Difference between models was small since most global relative risks were between 0.76 and 1.00. A closer look showed that carcinogen-induced rat studies matched human trials for aspirin, calcium, carotene, and were compatible for wheat bran. Min mice results were compatible with human results for aspirin, but discordant for calcium and wheat bran (no carotene study). These few results suggest that rodent models roughly predict effect in humans, but the prediction is not accurate for all agents. Based on three cases only, the carcinogen-induced rat model seems better than the Min mouse model. However, rodent studies are useful to screen potential chemopreventive agents, and to study mechanisms of carcinogenesis and chemoprevention

    An alginate hydrogel dura mater replacement for use with intracortical electrodes

    Full text link
    The collagenous dura mater requires a secure closure following implantation of neural prosthetic devices to avoid complications due to cerebrospinal fluid leakage and infections. Alginate was previously suggested for use as a dural sealant. The liquid application and controllable gelling conditions enable alginate to conform to the unique geometries of a neural prosthetic device and the surrounding dura mater to create a barrier with the external environment. In this study, we evaluated the use of alginate as a method to securely reclose a dural defect and seal around an untethered microscale neural probe in the rabbit model. After 3 days and 3 weeks, the sealing strength of alginate remained eight times greater than normal rabbit intracranial pressure and similar in both the presence and absence of a penetrating neural probe. For time points up to 3 months, there was no significant difference in dura mater fibrosis or thickness between alginate and controls. Application of alginate to a dural defect results in a watertight seal that remains intact while the dura mater reforms. These findings indicate that alginate is an effective tool for sealing around microscale neural probes and suggests broader application as a sealant for larger neural prosthetic devices. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78236/1/31733_ftp.pd

    Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation

    Get PDF
    Background: Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogensis after myocardial infarction (MI). However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. Methods and Results: We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. Conclusions: The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium

    Antimicrobial Strategies and Economic Considerations for Polymeric Medical Implants.

    Get PDF
    Healthcare acquired infections (HAI's) are a worldwide problem that can be exacerbated by surgery and the implantation of polymeric medical devices. The use of polymer based medical devices which incorporate antimicrobial strategies are now becoming an increasingly routine way of trying to prevent the potential for reduce chronic infection and device failure. There are a wide range of potential antimicrobial agents currently being incorporated into such polymers. However, it is difficult to determine which antimicrobial agent provides the greatest infection control. The economics of replacing current methods with impregnated polymer materials further complicates matters. It has been suggested that the use of a holistic system wide approach should to be developed around the implantation of medical devices which minimises the potential risk of infection. However, the use of such different approaches is still being developed. The control of such infections is important for individual patient health and the economic implications for healthcare services

    Mechanical properties of Triclosan sutures

    No full text
    To avoid infections and wound healing disorders, Triclosan coated sutures have been invented. Little is known of these sutures regarding their tensile properties. Three different Triclosan coated sutures (Vicryl 1 plus, PDS 0 plus, Monocryl 3-0 plus) were tested at several time points over 42 days regarding load to failure, strain, and stiffness compared to their non-coated versions (Vicryl 1, PDS 0, Monocryl 3-0). Four different measurement points were made. Suture loops were fixed in a material testing machine over two metal bars which were moved apart creating a stress to the fiber. Unpaired, two-tailed t-test were performed for each group (untreated and treated) while level of significance was defined at a level of p < 0.05. Vicryl 1 was significantly stronger on day 14 than Vicryl 1 plus (p = 0.033). On day 28, significant changes were found in PDS 0 which was weaker compared to PDS 0 plus (p = 0.039) and Vicryl 1 which was stronger than Vicryl 1 plus (p = 0.032). We have seen that Vicryl 1 plus sutures are significantly weaker according to loading to failure after 14 and 28 days, which might cause incisional hernias. PDS 0 sutures are used to reconstruct tendons, therefore a longer durableness might be of interest as re-ruptures of tendons are problematic. Our in vitro findings support, the use of Triclosan coated PDS plus sutures and Vicryl sutures as they show a longer resistance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1777-1782, 2018
    • …
    corecore