47 research outputs found

    Estimating the prevalence of breast cancer using a disease model: data problems and trends

    Get PDF
    BACKGROUND: Health policy and planning depend on quantitative data of disease epidemiology. However, empirical data are often incomplete or are of questionable validity. Disease models describing the relationship between incidence, prevalence and mortality are used to detect data problems or supplement missing data. Because time trends in the data affect their outcome, we compared the extent to which trends and known data problems affected model outcome for breast cancer. METHODS: We calculated breast cancer prevalence from Dutch incidence and mortality data (the Netherlands Cancer Registry and Statistics Netherlands) and compared this to regionally available prevalence data (Eindhoven Cancer Registry, IKZ). Subsequently, we recalculated the model adjusting for 1) limitations of the prevalence data, 2) a trend in incidence, 3) secondary primaries, and 4) excess mortality due to non-breast cancer deaths. RESULTS: There was a large discrepancy between calculated and IKZ prevalence, which could be explained for 60% by the limitations of the prevalence data plus the trend in incidence. Secondary primaries and excess mortality had relatively small effects only (explaining 17% and 6%, respectively), leaving a smaller part of the difference unexplained. CONCLUSION: IPM models can be useful both for checking data inconsistencies and for supplementing incomplete data, but their results should be interpreted with caution. Unknown data problems and trends may affect the outcome and in the absence of additional data, expert opinion is the only available judge

    Usefulness and acceptability of a standardised orientation and mobility training for partially-sighted older adults using an identification cane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orientation and mobility (O&M) training in using an identification (ID) cane is provided to partially-sighted older adults to facilitate independent functioning and participation in the community. Recently, a protocolised standardised O&M-training in the use of the ID cane was developed in The Netherlands. The purpose of this study is to assess the usefulness and acceptability of both the standardised training and the regular training for participants and O&M-trainers in a randomised controlled trial (NCT00946062).</p> <p>Methods</p> <p>The standardised O&M-training consists of two structured face-to-face sessions and one telephone follow-up, in which, in addition to the regular training, self-management and behavioural change techniques are applied. Questionnaires and interviews were used to collect data on the training’s usefulness, e.g. the population reached, self-reported benefits or achievements, and acceptability, e.g. the performance of the intervention according to protocol and participants’ exposure to and engagement in the training.</p> <p>Results</p> <p>Data was collected from 29 O&M-trainers and 68 participants. Regarding the self-reported benefits, outcomes were comparable for the standardised training and the regular training according the trainers and participants e.g., about 85% of the participants in both groups experienced benefits of the cane and about 70% gained confidence in their capabilities. Participants were actively involved in the standardised training. Nearly 40% of the participants in the standardised training group was not exposed to the training according to protocol regarding the number of sessions scheduled and several intervention elements, such as action planning and contracting.</p> <p>Conclusions</p> <p>The standardised and regular O&M-training showed to be useful and mostly acceptable for the partially-sighted older adults and trainers. Yet, a concern is the deviation from the protocol of the standardised O&M-training by the O&M-trainers regarding distinguishing elements such as action planning. Overall, participants appreciated both trainings and reported benefit.</p

    Metabolic Syndrome and Cardiovascular Disease after Hematopoietic Cell Transplantation: Screening and Preventive Practice Recommendations from the CIBMTR and EBMT

    Get PDF
    Metabolic syndrome (MetS) is a constellation of cardiovascular risk factors that increases the risk of cardiovascular disease, diabetes mellitus, and all-cause mortality. Long-term survivors of hematopoietic cell transplantation (HCT) have a substantial risk of developing MetS and cardiovascular disease, with an estimated prevalence of MetS of 31% to 49% among HCT recipients. Although MetS has not yet been proven to impact cardiovascular risk after HCT, an understanding of the incidence and risk factors for MetS in HCT recipients can provide the foundation to evaluate screening guidelines and develop interventions that may mitigate cardiovascular-related mortality. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to review literature and recommend practices appropriate to HCT recipients. Here we deliver consensus recommendations to help clinicians provide screening and preventive care for MetS and cardiovascular disease among HCT recipients. All HCT survivors should be advised of the risks of MetS and encouraged to undergo recommended screening based on their predisposition and ongoing risk factors

    Extremely Energetic Cosmic Rays Photonic Component Analysis

    No full text
    Os raios cósmicos de ultra-alta energia (UHECR) são partículas que chegam no topo da atmosfera terrestre com energia acima de 10^{18} eV. Sua composição é uma das chaves para elucidar sua origem que ainda é desconhecida. Devido ao seu baixo fluxo, os UHECR são detectados indiretamente através dos chuveiros atmosféricos extensos (EAS). Em nossa pesquisa desenvolvemos um método de discriminação da composição dos UHECR combinando dois parâmetros característicos destes chuveiros. Um deles é a profundidade na qual o chuveiro atinge seu máximo, tendo o maior número de partículas (X_{max}), e o outro, a densidade numérica de múons a 1000 m do centro do chuveiro (ho_{1000}). Temos como objetivo discriminar chuveiros iniciados por fótons daqueles iniciados por núcleos ou núcleons dado que mesmo uma pequena fração de fótons pode elucidar vários aspectos fundamentais dos UHECR. Nosso método é baseado em simulações de chuveiros, no qual, incluímos os efeitos de detecção e reconstrução, dados pelas técnicas de fluorescência e de superfície. Mostramos que nosso método de discriminação é robusto, mesmo incluindo as incertezas de reconstrução dos múons nos chuveiros que aqui estimamos para as próximas gerações de detectores de superfície. A incerteza do X_{max} será aquela usual da reconstrução pela técnica de fluorescência. Portanto, nossa análise tem um caráter preditivo para a separação da composição dos UHECR com estes parâmetros. Desta forma, nosso método pode ser aplicado aos dados dos observatórios de UHECR que utilizarem a próxima geração de detectores de superfície para reconstrução dos múons dos EAS, tais como as Colaborações Pierre Auger e Telescope Array.Ultrahigh energy cosmic rays (UHECR) are particles which reach the Earth\'s atmosphere with energy above 10^{18} eV. Their composition is one of the keys to elucidate their origin which is still unknown. Due their low flux, the UHECR are detected indirectly by Extensive Air Showers (EAS). In this thesis, we develop a method to investigate their composition by simultaneously analyzing two EAS parameters, the depth at which the shower reaches its maximum size, where the number of particles reaches its maximum (X_{max}), and the muon number at 1000 m from the shower core (ho_{1000}). We aim at discriminating EAS initiated by photons from those initiated by nucleus and nucleons. Even a small photonic fraction might reveal important fundamental UHECR questions. Our method is based on EAS simulations which includes, the detection and reconstruction by fluorescence and surface detectors. We show that our methodological approach is robust even when muons reconstruction uncertainties are considered. We derive the necessary uncertainty of the next generation of surface detectors that look for detect muons in EAS. As a result, our analysis is predictive in separating photon showers from nucleus and nucleons. Thus, our method can be used as an data analysis tool for UHECR experiments, such as the Pierre Auger Observatory and Telescope Array
    corecore