119 research outputs found

    Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks

    Get PDF
    The distribution of the number of links per species, or degree distribution, is widely used as a summary of the topology of complex networks. Degree distributions have been studied in a range of ecological networks, including both mutualistic bipartite networks of plants and pollinators or seed dispersers and antagonistic bipartite networks of plants and their consumers. The shape of a degree distribution, for example whether it follows an exponential or power-law form, is typically taken to be indicative of the processes structuring the network. The skewed degree distributions of bipartite mutualistic and antagonistic networks are usually assumed to show that ecological or co-evolutionary processes constrain the relative numbers of specialists and generalists in the network. I show that a simple null model based on the principle of maximum entropy cannot be rejected as a model for the degree distributions in most of the 115 bipartite ecological networks tested here. The model requires knowledge of the number of nodes and links in the network, but needs no other ecological information. The model cannot be rejected for 159 (69%) of the 230 degree distributions of the 115 networks tested. It performed equally well on the plant and animal degree distributions, and cannot be rejected for 81 (70%) of the 115 plant distributions and 78 (68%) of the animal distributions. There are consistent differences between the degree distributions of mutualistic and antagonistic networks, suggesting that different processes are constraining these two classes of networks. Fit to the MaxEnt null model is consistently poor among the largest mutualistic networks. Potential ecological and methodological explanations for deviations from the model suggest that spatial and temporal heterogeneity are important drivers of the structure of these large networks

    Piston-driven numerical wave tank based on WENO solver of well-balanced shallow water equations

    Get PDF
    A numerical wave tank equipped with a piston type wave-maker is presented for long-duration simulations of long waves in shallow water. Both wave maker and tank are modelled using the nonlinear shallow water equations, with motions of the numerical piston paddle accomplished via a linear mapping technique. Three approaches are used to increase computational efficiency and accuracy. First, the model satisfies the exact conservation property (C-property), a stepping stone towards properly balancing each term in the governing equation. Second, a high-order weighted essentially non-oscillatory (WENO) method is used to reduce accumulation of truncation error. Third, a cut-off algorithm is implemented to handle contaminated digits arising from round-off error. If not treated, such errors could prevent a numerical scheme from satisfying the exact C-property in long-duration simulations. Extensive numerical tests are performed to examine the well-balanced property, high order accuracy, and shock-capturing ability of the present scheme. Correct implementation of the wave paddle generator is verified by comparing numerical predictions against analytical solutions of sinusoidal, solitary, and cnoidal waves. In all cases, the model gives satisfactory results for small-amplitude, low frequency waves. Error analysis is used to investigate model limitations and derive a user criterion for long wave generation by the model

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    corecore