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ABSTRACT 27 

A numerical wave tank equipped with a piston type wave-maker is presented for long-duration 28 

simulations of long waves in shallow water. Both wave maker and tank are modelled using the nonlinear 29 

shallow water equations, with motions of the numerical piston paddle accomplished via a linear 30 

mapping technique. Three approaches are used to increase computational efficiency and accuracy. First, 31 

the model satisfies the exact conservation property (C-property), a stepping stone towards properly 32 

balancing each term in the governing equation. Second, a high-order WENO method is used to reduce 33 

accumulation of truncation error. Third, a cut-off algorithm is implemented to handle contaminated 34 

digits arising from round-off error. If not treated, such errors could prevent a numerical scheme from 35 

satisfying the exact C-property in long-duration simulations. Extensive numerical tests are performed 36 

to examine the well-balanced property, high order accuracy, and shock-capturing ability of the present 37 

scheme. Correct implementation of the wave paddle generator is verified by comparing numerical 38 

predictions against analytical solutions of sinusoidal, solitary, and cnoidal waves. In all cases, the model 39 

gives satisfactory results for small-amplitude, low frequency waves. Error analysis is used to investigate 40 

model limitations and derive a user criterion for long wave generation by the model. 41 

 42 

 43 

 44 

 45 

  46 



1. Introduction  47 

In wave tank tests, the wave-maker is usually installed at one end of an enclosed flume, with waves 48 

generated by a paddle whose movement is designed to mimic the Lagrangian motion of water particles 49 

within the waves. Various types of wave-makers have been devised including piston, flap, and wedge 50 

types (see e.g. Hughes, 1993). Of these, the piston type wave-maker is particularly well suited for the 51 

generation of waves in shallow water, where the wavelength L is much larger than the water depth h, 52 

i.e., h/L < 0.05 (Dean and Dalrymple, 1991). Such piston type wave-makers have been widely used in 53 

experimental studies of coastal waves and long waves (see e.g., Ursell et al., 1960; Madsen, 1970; 54 

Zabusky and Galvin ,1971; Goring, 1978; Synolakis, 1987; Synolakis, 1990; Liu et al., 1995; Monaghan 55 

and Kos, 2000; Guizien and Barthélemy, 2002; Goseberg et al., 2013; Chen et al., 2016; Schimmels et 56 

al., 2016). To overcome error introduced by scale effects, several studies have been carried out at large-57 

scale (e.g., Streicher et al. 2013; Previsic et al., 2014; Schimmels et al., 2014; Yu et al., 2015; Wenneker 58 

et al., 2016). Alternatively, numerical wave tanks readily facilitate simulation of hydrodynamic 59 

phenomena at field scale and are advantageous in cases where field observations are unavailable or 60 

laboratory experiments are not at sufficiently large scale (Hornsby, 2002; Aly and Bitsuamlak, 2013).  61 

Many numerical studies have been carried out on long waves in the shallow water region (see e.g. 62 

Walkley, 1999; Toro, 2001; Mader, 2004; Vreugdenhil, 2013) and on wave generation methods (Table 63 

1; Finnegan and Goggins, 2015). Although detailed information can be gained from three-dimensional 64 

solutions of the viscous Navier-Stokes or inviscid Laplace equations, such approaches are 65 

computationally too demanding for long-duration simulations, and so depth-averaged models, such as 66 

those based on Boussinesq-type equations and shallow water equations, are widely employed. For 67 

example, Orszaghova et al. (2012) used a hybrid solver of the enhanced Boussinesq-type equations for 68 

pre-breaking waves and the nonlinear shallow water equations for broken waves to model a wave tank 69 

equipped with a piston type wave-maker. However, Boussinesq models can incur considerable 70 

computational overhead when applied to the long-term simulation of certain large-scale phenomena, 71 

such as bed morphological change and very long waves (tsunami, internal waves, storm surges, and 72 

planetary waves). In these cases, it is reasonable to solve the simpler shallow water equations, which 73 



can resolve long waves where the pressure distribution is hydrostatic, provided limitations arising from 74 

the accumulation of numerical error due to long-duration integration and the requirement of a moving 75 

wave maker can be overcome. The present paper suggests three methods aimed at handling such issues 76 

affecting long-duration simulations with the shallow water equations.  77 

First, we ensure that the momentum flux and source terms are well-balanced so that they satisfy 78 

the exact conservation property (C-property) (Bermúdez and Vázquez-Cendón, 1994) to prevent 79 

accumulation of error in the numerical wave tank which is essentially an isolated system. Table 2 lists 80 

a brief summary of pertinent literature, which can be divided into two categories. The exact C-property 81 

can be satisfied through either numerical methods (see e.g. Leveque, 1998; Vukovic and Sopta, 2002; 82 

and Xing and Shu, 2005) or by algebraic reformulation of the partial differential equations (see e.g. 83 

Rogers et al., 2003 and Liang and Borthwick, 2009). More recently, Xing and Shu (2005)’s ideas have 84 

been further extended to more advanced approaches such as hybrid WENO (Zhu et al., 2017) and 85 

weighted compacted nonlinear (WCN) schemes (Gao and Hu, 2017). Li et al. (2015) extended Xing 86 

and Shu (2005)’s well-balanced strategy to the ‘pre-balanced’ shallow water equations proposed by 87 

Rogers et al. (2003), and introduced a robust method that simultaneously combined both well-balanced 88 

strategies. Following a similar strategy, we construct a well-balanced scheme by applying Xing and Shu 89 

(2005)'s method to Liang and Borthwick (2009)'s shallow water equations. 90 

Second, a high-order method is applied to obtain accurate simulations of long-duration unsteady 91 

flows, while reducing the magnitude of accumulated truncation error (Wang, 2007). Over the past 92 

twenty years, substantial research effort has been directed towards solving the nonlinear shallow water 93 

equations using high order schemes; examples include the discontinuous Galerkin method (DGM) 94 

(Giraldo et al., 2002; Xing et al., 2010; Bonev et al., 2018; Li et al., 2018), advective upwind splitting 95 

method (AUSM) (Ullrich et al., 2010), the essentially non-oscillatory scheme (ENO) (Vukovic and 96 

Sopta, 2002), and the weighted ENO (WENO) (Xing and Shu, 2005; Noelle et al., 2007; Li et al., 2012). 97 

Herein, we solve the nonlinear shallow water equation using the fifth-order WENO method in space 98 

and the third-order Runge-Kutta scheme in time. Given that round off errors can accumulate at machine 99 

precision level and cause the scheme to fail to satisfy the exact C-property in long-duration simulations, 100 



a cut-off algorithm is used to remove the effect of digits contaminated by machine error arising from 101 

floating-point arithmetic. This enables the present model to satisfy the exact C-property for long-102 

duration simulations.  103 

Third, we produce a numerical wave tank that mimics the behaviour of a tank with a piston-type 104 

wave-maker. Generally, there are two ways to generate waves numerically (Table 1). One involves 105 

directly imposing mathematical solutions obtained from wave theory on the boundary conditions. The 106 

other involves implementing the numerical piston paddle and operating it with wave-maker theory. The 107 

former is advantageous in implementing mathematically exact waves, but difficult to compare against 108 

corresponding laboratory generated waves. The latter method enables easier validation against 109 

laboratory measurements, and so is useful when simulating the behavior of an actual wave tank. 110 

Therefore, we use a linearly mapped time-varying domain in the region of the paddle domain following 111 

Orszaghova et al. (2012) whereby the physical grid contracts and expands as the paddle advances and 112 

retreats. This enables paddle displacement signals to be incorporated directly in the numerical model as 113 

a driving boundary condition. 114 

In conclusion, the key contribution of this study comprises three aspects in implementing the 115 

piston-driven numerical wave tank. First, a well-balanced WENO method is formulated rigorously, 116 

combining ideas by Xing and Shu (2005) and Liang and Borthwick (2009). Second, the formulation is 117 

extended to linearly mapped shallow water equations which describe the movement of a piston paddle 118 

in the paddle sub-domain. Finally, by introducing a cut-off algorithm, we construct a model that satisfies 119 

the exact C-property for long-duration simulations. 120 

The paper is organized as follows. Section 2 describes the governing equations, the conditions 121 

necessary to satisfy the exact C-property, and the construction of a well-balanced scheme. Section 3 122 

presents the 5th order WENO method that satisfies the exact C-property without loss of accuracy, the 123 

cut-off algorithm used to prevent the scheme from losing its well-balanced property when applied to 124 

long-duration simulation, and the implementation of the piston type wave-maker. Section 4 discusses 125 

results of benchmark tests conducted to verify the numerical model and devises a user criterion for the 126 

piston paddle. Section 5 summarizes the main conclusions. 127 



 128 

Table 1. Example studies on numerical methods of wave generation. 129 

Previous work Numerical method Governing equation Wave generation method 

Boo, 2002 BEM Laplace Boundary condition 

Turnbull et al., 2003a  FEM Laplace Boundary condition 

Koo and Kim, 2004 BEM Laplace Boundary condition 

Park et al., 2004 FVM Navier-Stokes Boundary condition 

Ning and Teng, 2007 BEM Laplace Boundary condition 

Ning et al., 2008 BEM Laplace Boundary condition 

Yan and Lui, 2011 BEM Laplace Boundary condition 

Yu and Li, 2013 FVM Navier-Stokes Boundary condition 

Finnegan & Goggins, 2015 FVM Navier-Stokes Boundary condition 

Turnbull et al., 2003b FEM Laplace Piston type wave-maker 

Wu and Hu, 2004 FEM Laplace Piston type wave-maker 

Sriram et al., 2006 FEM Laplace Piston type wave-maker 

Khayyer et el., 2007 SPH Navier-Stokes Piston type wave-maker 

Agamloh et al., 2008 FVM Navier-Stokes Piston type wave-maker 

Liang et al., 2010  FVM Navier-Stokes Piston type wave-maker 

Orszaghova et al., 2012 FDM Boussinesq Piston type wave-maker 

Wen and Ren, 2018 SPH Navier-Stokes Piston type wave-maker 

BEM: boundary element method FEM: finite element method, FVM: finite volume method, FDM: finite 130 
difference method, and SPH: smoothed particle hydrodynamics. 131 

 132 

Table 2. Previous studies on well-balanced schemes for the shallow water equations 133 

Paper Content 

Bermúdez and Vázquez-Cendón, 1994 Definition of exact conservation (C-) property 

Greenberg and Leroux, 1996 Introduce concept of well-balanced scheme 

Leveque, 1998 Propose quasi-steady wave propagation algorithm using C-property 

Vukovic and Sopta, 2002 Combine the C-property with ENO/WENO 

Rogers et al., 2003 Propose algebraic balancing scheme for shallow water equations 

Xing and Shu, 2005 Apply WENO scheme to shallow water equation using C-property 

Liang and Borthwick, 2009 Algebraic balancing scheme for multiple wet/dry boundaries 

 134 

2. Well-Balanced Model  135 

After depth-integration invoking the hydrostatic assumption, the Reynolds-averaged continuity 136 

and Navier-Stokes equations are simplified to give the shallow water equations over a non-erodible bed. 137 

In one spatial dimension, the shallow water equation may be expressed in vector notation as: 138 



,
t x

 
 

 

u f
s   (1) 139 

0
, , and

x

h hU

ghhU hUU 

    
       
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u f s ,  (2) 140 

where u  is the vector of conserved dependent variables, f  is the vector of x-direction fluxes, s  is 141 

the vector of source terms, t  is time, x  is stream-wise distance, g  is gravitational acceleration, h  142 

is local water depth, U   is depth-averaged velocity in the x-direction,    is the surface elevation 143 

above a horizontal datum, and subscript x  refers to the partial derivative in x . In practice (see e.g. 144 

Toro, 2001), it is usual to split the source term using the fact that h b     where b   is the bed 145 

elevation above a fixed horizontal datum, giving:  146 

2
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, , and1

2
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hU
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ghbhU hUU gh

 
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 

u f s .  (3) 147 

In Eq. (3), 2½gh expresses the hydrostatic pressure thrust acting on each side of the water column and 148 

xghb is the x-direction component of the pressure thrust acting on the bed (Fig. 1).  149 

 150 

 151 

Fig. 1. Schematic of water column used in derivation of the shallow water equations 152 

 153 

A well-balanced numerical scheme for the shallow water equation should preserve the horizontal 154 

free surface elevation of still water in a basin even when the bed has non-uniform elevation. By 155 

definition, such a model must satisfy the exact C-property (Bermúdez and Vázquez-Cendón, 1994) 156 



when maintaining stationary conditions given by  157 

const. and 0.h b hU       (4) 158 

However, substituting (4) into (3), we obtain,  159 

21
,

2
xgh ghb

x

  
  
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  (5) 160 

which is a function neither of   nor hU , but instead of h . It is necessary for both sides of Eq. (5) 161 

to give exactly matching results in order for the hydrostatic force gradient to remain in balance. 162 

Otherwise an unphysical flux arises from the truncation error, which increasingly contaminates the 163 

results. To remove such error, the present study follows ideas expressed by Xing and Shu (2005) and 164 

Liang and Borthwick (2009) in constructing a well-balanced model. Liang and Borthwick (2009), 165 

reformulated the Eqs. (1) and (3) as functions of   and hU , and derived the following deviatoric 166 

form of the shallow water equations that satisfies the exact C-property algebraically. 167 
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 

u f s   (6) 168 

Liang and Borthwick solved Eqs. (1) and (6) using a second-order accurate, MUSCL-Hancock, HLLC 169 

finite volume scheme, and demonstrated that the Eqs. (1) and (6) are well-balanced for HLLC. It 170 

should also be noted that Eqs. (1) and (6) satisfy the exact C-property for more general cases. In other 171 

words, if all x-derivative terms in Eqs. (1) and (6) are approximated using the same linear scheme 172 

satisfying consistency, then the model satisfies the exact C-property (see Appendix for proof; 173 

Proposition 1) where the consistency condition means that the x-derivative of constant functions is 174 

zero. It is therefore important to maintain linearity and consistency of the spatial derivatives in the 175 

numerical differentiation. 176 

Xing and Shu (2005) also proposed a well-balanced scheme using the WENO method. To achieve 177 

linearity, Xing and Shu split the source terms and rewrote the shallow water equations as follows: 178 

1 2( ) ,g h b
t x x x

  
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s su f
  (7) 179 
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where 1s   and 2s   are source terms. Xing and Shu approximated each x-derivative term in Eq. (7) 181 

using the same WENO operator in order to satisfy consistency of spatial derivative. To guarantee 182 

linearity of the WENO algorithm in stationary conditions, Xing and Shu formulated the flux splitting 183 

method using the C-property ( ) instead of conservative variables ( h ) as follows:  184 
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where   is an eigenvalue of the Jacobian matrix of flux terms; 
f  is the vector of split fluxes; and 187 

1


s  and 2

s  are vectors of split source terms. Xing and Shu (2005)’s method therefore gives the same 188 

results as if all x-derivative terms were treated as a single term using a single algorithm for the stationary 189 

flow case. Consequently, Xing and Shu’s method satisfies the exact C-property up to machine level 190 

without losing high order accuracy, and so meets all of the conditions for Proposition 1. Furthermore, 191 

the flux splitting method in Eq. (9) is perfectly suitable for Eq. (6) because the dependent variables 192 

in Eq. (6) comprise the C-property. Note that this deviatoric flux splitting method corresponds to a 193 

Lax-Friedrichs flux splitting of Eq. (6). To implement a well-balanced scheme satisfying the exact C-194 

property, we therefore apply the WENO algorithm of Xing and Shu (2005) to the deviatoric shallow 195 

water equations (i.e., Eqs. (1) and (6)) derived by Liang and Borthwick (2009). 196 

Despite implementation of the foregoing approaches to achieve well-balanced shallow water 197 

equations, numerical models can still suffer imbalance at machine level. Although the well-balanced 198 

property has been numerically demonstrated in short-duration simulations of still water conditions (e.g., 199 

Leveque, 1998; Vukovic and Sopta, 2002; Rogers et al. 2003; Xing and Shu, 2005; Castro et al., 2006; 200 

Lukáčová-Medvid’ová et al. 2007; Liang and Borthwick 2009), the accumulation of round-off error in 201 



an isolated system such as a wave tank could cause serious deterioration in accuracy of long-duration 202 

simulations. In other words, growth in round-off error could prevent the model from satisfying the exact 203 

C-property, causing long-term deterioration in conservation of mass and momentum. Therefore, it is 204 

desirable that the numerical scheme should eliminate the accumulation of round-off error in an isolated 205 

system.  206 

 207 

3. Numerical Method  208 

3.1. The WENO Method Satisfying the Exact C-Property 209 

The governing equation is a conservative form of the one-dimensional shallow water equations 210 

given by: 211 
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Approximate weak solutions of the above governing equations at the i-th cell iu  can be calculated 214 

from 215 
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 217 

where the integer subscript i  represents a given cell, x  is the cell size, the subscript 1/2 refers to the 218 

cell interface, and 1/2
ˆ
if  is the cell interface flux. Here, the 5th order WENO method reconstructs 1/2

ˆ
if219 

and 1/2is  in space, and the 3rd order Runge-Kutta method is used to integrate Eq. (13) in time. In the 220 

first step of WENO reconstruction, the vector of flux terms is divided into positive and negative parts, 221 

  f f f ,   (14) 222 

which satisfy ( ) / 0  f u u  and ( ) / 0  f u u , and the source term vector is split such that 223 

  s s s .   (15) 224 

Following Xing and Shu, in order to satisfy the exact C-property,  225 
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where r is the nonlinear weight of the r-th sub-stencil calculated from:  231 

2

0 1 2

and
( )

r r
r r

r

 
 

    
 

  
,   (19) 232 

in which the linear weights 0 0.3,   1 0.6,   and 2 0.1,   and 610   is a parameter preventing 233 

the denominator from becoming zero. r  are smoothness indices given by 234 
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The numerical fluxes 
( )
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if   are represented by an affine combination of if   belonging to the r-th 236 
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For / 0  f u , 1/2
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i



f  can be obtained in a similar way to that outlined above. The flux vector at the 240 



cell-interface 
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similar procedure is again used, except that 1/2is  is reconstructed using nonlinear weights obtained 242 

from the flux reconstruction. 243 

A 3rd order Runge-Kutta scheme is used to integrate the resulting ODE system (i.e., Eq. (13)) in 244 

time, and satisfies the total variation diminishing (TVD) property for unity CFL number (as previously 245 

shown by e.g., Shu and Osher, 1988; Jiang and Shu, 1996; Gottlieb and Shu, 1998). The time-marching 246 

steps are 247 
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s

  (22) 248 

where superscript n  refers to time level and t  is the time step.  249 

 250 

3.2. Cut-Off Algorithm 251 

In long-duration simulations, error can accumulate owing to mismatches between different round-252 

off errors arising from both sides of the simplified shallow water momentum equation for stationary 253 

flow,   254 

21
( 2 )

2

b
g b g

x x
  

  
   

  
.  (23) 255 

Both sides of Eq. (23) are computed through different arithmetic procedures, and so the calculated 256 

results can differ by several units in the last place (ULP) (Goldberg, 1991) due to round-off errors. Such 257 

errors cause a tiny imbalance in momentum balance which in turn drives a very small flux that alters 258 

the water elevation  . Round-off errors can also inherently affect the water elevation values calculated 259 

from the mass conservation equation, again generating a spurious numerical flux. In this fashion, such 260 

errors accumulate significantly as time progresses, causing the numerical model to fail to satisfy the 261 

exact C-property. From an empirical perspective, such mismatches obviously occur more frequently 262 

when more arithmetic operations are performed on finer meshes involving larger numbers of cells. It is 263 



therefore desirable to reduce or remove cumulative round-off errors in high-order schemes used for 264 

long-duration simulations. To reduce such errors, we propose a special rounding technique as follows. 265 

First, the maximum machine error is determined by finding the k ULP, when computing each term in 266 

Eq. (11). The maximum error is then reduced to 0.5 ULP by using the extended format in IEEE standard. 267 

Second, the largest value is selected as reference. Third, the values of each term in Eq. (11) are rounded 268 

at any digit larger than the reference. In short, this technique rounds off at the first digits that are not 269 

affected by round-off error and cuts off lower digits possibly contaminated by round-off error. This 270 

rounding method aims to use only true values that are unaffected by machine error. From now, this 271 

method is termed the cut-off algorithm. 272 

 273 

3.3 Well-Balanced Model for the Paddle Sub-Domain 274 

The numerical wave tank occupies paddle and main sub-domains (Fig. 2). Whereas the main sub-275 

domain comprises a fixed grid, the paddle sub-domain utilizes a moving grid that expands and contracts 276 

in accordance with the motion of the piston. This paddle sub-domain is formulated as follows. 277 

( ) ( ),o pl t l x t    (24) 278 

( ), ,p ox x t l     (25) 279 

where ( )l t  is the time-dependent length of the paddle sub-domain, ol  is the location of the fixed, end 280 

point of the paddle sub-domain, and ( )px t   is the time-dependent displacement of the paddle. For 281 

computational convenience, the moving domain is transformed to a fixed domain, using a similar 282 

approach to Orszaghova et al. (2012). Here, the moving coordinate system x  is transformed to a fixed 283 

coordinate system, x , using the linear mapping, V , defined as: 284 

   ( ) ( ) ; 0, .
( )

o
p o

l
x V x x x t x l

l t
      (26) 285 

Using the chain rule, Eq. (11) defined in the moving coordinate system is mapped to the fixed new 286 

coordinate system, ( , )x t , as follows. First, the derivatives in t  and x  are transformed as  287 

( )ol xx dl

t t t t dt lx x

     
   

    
   (27) 288 



and 289 

olt x

x x t x lx x

     
  

     
.   (28) 290 

Then, applying Eqs. (27) and (28) to Eq. (11) in the paddle sub-domain,   291 

( )o o ol x l ldl
g

t dt l l lx x x


   
   

   

u u f s
.   (29) 292 

Numerical solutions of Eq. (29) are transformed to the original coordinate system x  using the inverse 293 

mapping: 294 

1( ) p

o

l
V x x x x

l

    .  (30) 295 

To resolve flow discontinuities that may arise during the simulation, we use the 5th order WENO 296 

method which is a Riemann solver, based on Xing and Shu (2005)’s well-balanced scheme, noting its 297 

consistency, scalability to high-order accuracy, and exact C-property (see Appendix for more details; 298 

Proposition 2).  299 

 300 

 301 

Fig. 2. Schematic of numerical wave tank 302 

 303 

3.4 Interface and Boundary Conditions. 304 

At the interface between paddle and main sub-domains, the physical dimension of the cell on the 305 

paddle side of the interface changes with time, whereas that on the main side is invariant in time. This 306 

temporal inconsistency in mesh structure at the interface could inhibit the direct passage of information 307 

across the interface, and so a special method has been devised to handle this problem. Given that the 5th 308 

order WENO relies on 6 equally spaced neighboring cells for reconstruction, we use several ghost cells 309 



to formulate the interface between the sub-domains (Fig. 2). Once the uniform ghost cells have been 310 

constructed, a smoothness indicator detects the presence or otherwise of any discontinuity. If a given 311 

ghost cell has a discontinuity, first-order interpolation is applied. Otherwise, a fifth-order upwind 312 

method is used for interpolation. This method is akin to an open boundary condition that exchanges 313 

information between two domains. For the hyperbolic shallow water equations considered herein, the 314 

Riemann invariants are selected as interpolation objects, with incoming and outgoing information 315 

treated using the method of characteristics. Assuming that the interface of the two sub-domains is flat-316 

bottomed, the Riemann invariants are given by  317 

T( 2 , 2 )J U gh U gh   ,  (31) 318 

where superscript T  represents the vector transpose.   319 

At the piston boundary, the WENO method is no longer directly applicable because only three 320 

interior values can be assigned and it is physically inappropriate to place ghost cells behind the piston, 321 

outside the wave tank. Hence, we construct a piston-sided boundary condition for wave generation 322 

using fifth-order forward differences (consistent with the accuracy of the main scheme):  323 

 1 1 2 3 4 5 6

1
( ) 137 300 300 200 75 12 ,
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x

x
x

      


f f f f f f f   (32) 324 

 2 1 2 3 4 5 6

1
( ) 12 65 120 60 20 3 ,

60
x

x
x

      


f f f f f f f   (33) 325 

 3 1 2 3 4 5 6

1
( ) 3 30 20 60 15 2 .

60
x

x
x

     


f f f f f f f   (34) 326 

The six consecutive cells closest to the piston paddle are assumed to be smooth without discontinuity.  327 

The primitive boundary condition at the first cell is: 328 

1

pdx
U

dt
 ,   (35) 329 

where 1U  is the depth-averaged velocity of the piston-sided first cell. This ensures that the paddle 330 

velocity is equal to the depth-averaged particle velocity (Hughes, 1993). In other words, the Lagrangian 331 

motions of the paddle match the depth-averaged water particle velocity at the first cell in keeping with 332 

the kinematic free surface boundary condition. Eq. (35) represents a clamped boundary, and so, when 333 



the paddle starts to move, discontinuous values may be input into the first cell. To prevent spurious 334 

oscillations created by a discontinuity causing the solution to become unstable, the amplitude and 335 

frequency of the input waves are ramped up gradually to the desired values. During the spin-up period, 336 

wave information is exported across the interface using a Flather-type open boundary condition (OBC) 337 

(Blayo and Debreu, 2005). Once the wave attains its target amplitude, the OBC is no longer used and 338 

all information is passed to the main sub-domain.  339 

 340 

4. Numerical Results. 341 

Several numerical experiments are used to validate the numerical model, with the results compared 342 

to analytical or fine-grid solutions. Three types of numerical experiments are undertaken: the first to 343 

confirm whether the exact C-property is satisfied; the second to estimate the accuracy and stability of 344 

the numerical scheme; and the third to investigate the accuracy of the piston boundary condition.  345 

 346 

4.1. Tests for Exact C-Property 347 

A case with non-flat bottom topology specified in the range of [0, 10]x  is tested for still water 348 

conditions using three different models satisfying the exact C-property, formulated according to Xing 349 

and Shu (2005), Liang and Borthwick (2009) and a combination of these (the present scheme). All 350 

computations are undertaken in double precision on a computational mesh comprising 1000 cells, with 351 

CFL number set to 0.4. The tank has a smoothly varying parabolic bed elevation (Fig. 3) given by 352 

2
5

( ) 1 4
5

x
b x

 
   

 
.   (36) 353 

Initial conditions are 354 

( ,0) 10 and ( ,0) 0x U x   .   (37) 355 

 356 



 357 

Fig. 3. Still water tests for exact C-property: (a) bed topography and initial water level; (b) zoomed-in 358 

initial water level. 359 

 360 

Fig. 4(a) shows the logarithmic growth in accumulated round-off error with simulation time. For a short 361 

1 s simulation, the three models all produced small 1L  and L  errors ( 1210 ). For a longer 10,000 362 

s simulation, the accumulated errors become noticeably amplified. It should be noted that even though 363 

Liang and Borthwick (2009) used a second-order finite volume method, their scheme required fewer 364 

arithmetic operations, leading to much smaller errors than Xing and Shu (2005)’s fifth-order finite 365 

difference method (Figs. 4(a)-4(c)). From an empirical perspective, such mismatches obviously occur 366 

more frequently when more arithmetic operations are performed on finer meshes involving larger 367 

numbers of cells. It can be seen that the round-off errors of the high-order scheme initially accumulate 368 

faster than the lower-order scheme (Fig. 4(a)) because of the increased number of computational steps. 369 

Most previous studies (e.g., Xing and Shu, 2005; Castro et al., 2006; Lukáčová-Medvid’ová et al. 370 

2007) tested the exact C-property for a finite short time. However, the accumulation of round-off errors 371 

in long-term still water simulations is too significant to be neglected, providing justification for the use 372 

of the cut-off algorithm in the present work which provided results that are perfectly well-balanced 373 

(with errors remaining even below the round-off level as in Fig. 4).  374 

 375 



 376 

Fig. 4. Still water tests for exact C-property: (a) and (b) accumulation of round-off L error (solid lines) 377 

and 1L  error (dotted lines); (c) and (d) water surface elevation at different time levels, n . Red, black, 378 

blue, and purple lines refer to Xing and Shu (2005), Liang and Borthwick (2009), the present combined 379 

scheme without cut-off algorithm, and the present scheme with the cut-off algorithm.  380 

 381 

4.2. Main Solver Validation 382 

Five numerical experiments with different initial and boundary values are now carried out to 383 

examine the accuracy and stability of the present shallow water solver. The CFL number is set to 0.6 384 

for all tests in this section. 385 

 386 

4.2.1. Accuracy of Smooth Solution 387 

This test checks the fifth-order accuracy of the present scheme in computing a smooth solution to 388 



the shallow water equations. Fig. 5 shows the bed topography and initial free surface and velocity 389 

profiles proposed by Xing and Shu (2005), given by   390 

2 sin[cos(2 )]
( ) sin ( ), ( ,0) 5 exp[cos(2 )], and ( ,0)

5 exp[cos(2 )]

x
b x x h x x U x

x


 


   


. (38) 391 

 392 

 393 

Fig. 5. Smooth solution case devised by Xing and Shu (2005): (a) bed topography and initial water 394 

surface level; and (b) depth-averaged velocity profiles.  395 

 396 

This case is tested on a fine resolution reference mesh of N 25,600 cells, following Xing and Shu. 397 

Table 3 lists the 1L   and L   errors and numerical order of accuracy obtained with respect to the 398 

reference solution at time 0.1t  s; as the number of cells increases, the order of the accuracy converges 399 

to fifth order, confirming that the scheme has been properly implemented.  400 

 401 

Table 3. 1L  and L  errors and order of accuracy for Xing and Shu’s (2005) smooth solution  402 

N  
h   U   

1L  order L  order 
1L  order L  order 

25 1.69E-02  7.64E-02  1.41E-02  7.64E-02  

50 2.09E-03 3.014 1.70E-02 2.169 2.63E-03 2.426 2.13E-02 1.843 

100 3.03E-04 2.787 4.14E-03 2.036 3.75E-04 2.810 4.96E-03 2.104 

200 2.14E-05 3.821 5.01E-04 3.049 2.61E-05 3.845 6.13E-04 3.016 

400 8.77E-07 4.609 2.69E-05 4.219 1.07E-06 4.615 3.26E-05 4.232 

800 2.98E-08 4.878 9.53E-07 4.818 3.62E-08 4.881 1.15E-06 4.823 

(a) (b) 



1600 9.78E-10 4.931 3.00E-08 4.987 1.17E-09 4.949 3.62E-08 4.991 

N is the number of cells, h is water depth, andU is depth-averaged velocity. 403 

 404 

4.2.2. Solutions with Discontinuity  405 

Three numerical experiments tested the shock capturing ability of the solver. The first involved the 406 

generation of an upstream-directed critical rarefaction and downstream-directed bore proposed by Toro 407 

(2001) with initial conditions,  408 

1 if 0 25, 2.5 if 0 25,
( ,0) and ( ,0)

0.1 otherwise,     0 otherwise.     

x x
h x U x

    
  
 

 (39) 409 

Fig. 6 shows the initial and final free surface and velocity profiles for a simulation at t = 0 s and t = 7 s 410 

on a mesh of 500 cells in a channel 50 m long. There is very close agreement between the model 411 

predictions and results obtained by Toro (2001) on a very fine mesh.  412 

 413 

 414 

Fig. 6. Left critical rarefaction and right bore, where dotted lines represent the initial conditions at 415 

0st  , and black circular dots represent numerical predictions and solid lines represent Toro’s (2001) 416 

quasi-analytical solution at 7t  s: (a) free surface elevation; and (b) depth-averaged velocity profiles. 417 

 418 

The second test simulates two rarefaction waves propagating in opposite directions over a nearly 419 

dry bed in a channel of length 50 m. The equations of the initial conditions are given as  420 

5 if 0 25,
( ,0) 1 and ( ,0)

5 otherwise.       

x
h x U x

  
  


  (40) 421 



Fig. 7 shows the initial flat free surface with oppositely directed flow at 0t  s. By 2.5t  s, forward 422 

and backward propagating rarefaction waves can be seen, in satisfactory agreement with corresponding 423 

fine mesh results presented by Toro (2001). 424 

 425 

 426 

Fig. 7. Discontinuous solution with two rarefaction waves over a nearly dry bed, where dotted lines 427 

represent the initial conditions at 0t  s, and black circular dots represent numerical predictions and 428 

solid lines represent Toro’s (2001) quasi-analytical solution at 2.5t  s: (a) free surface elevation; and 429 

(b) depth-averaged velocity profiles. 430 

 431 

The third test concerns a dam break over discontinuous topography, comprising a rectangular hump, 432 

proposed by Bermúdez and Vázquez-Cendón (1994). This case examines the ability of the scheme to 433 

handle shocks in the presence of a non-zero source term. Figs. 8(a) and 8(b) shows the bed topography 434 

and initial conditions for [0, 1500]x given by, 435 

8 if | 750 | 1500 / 8,
( )

0 otherwise,                    

x
b x

 
 


  (41) 436 

and 437 

20 ( ) if 0 750,
( ,0) and ( ,0) 0

15 ( ) otherwise     

b x x
h x U x

b x

  
 


.  (42) 438 

Figs. 8(c) and 8(d) show the free surface elevation and depth-averaged velocity profiles at 15t  s and 439 

60t  s on three grids of 200 and 3000 cells. The predictions on both the coarse and fine meshes match 440 

those of Bermúdez and Vázquez-Cendón (1994) confirming the present solver correctly reproduces 441 



discontinuous solutions, with correct wave speeds and amplitudes.  442 

 443 

 444 

Fig. 8. Dam break over a box at 15t  s and 60t  s: (a) topography and initial free surface elevation 445 

profiles; (b) initial depth-averaged velocity profile; (c) and (d) the numerical predictions of surface 446 

elevation and depth-averaged velocity (dotted line is the initial condition, and solid lines, circular and 447 

triangular dots are numerical solutions on meshes of 3,000, 200, and 200 grid points.  448 

 449 

4.2.3. A Small Perturbation Applied to Still Water 450 

This case tests a quasi-stationary condition, similar to that suggested by Leveque (1998). The bed 451 

topography and initial conditions for [0, 2]x  (Figs. 9(a) and 9(b)) are  452 

 0.25 cos[10 ( 1.5)] 1 if 1.4 1.6,
( )

0 otherwise,        

x x
b x

    
 


  (43) 453 

and 454 



1 ( ) if 1.1 1.2,
( ,0) and ( ,0) 0

1 ( ) otherwise,      

b x x
h x U x

b x

   
 


. (44) 455 

The perturbation amplitude,  , is set to 0.001 m and 0.2 m in order to generate linear and nonlinear 456 

wave cases. In both cases, two waves of the same amplitude propagate in opposite directions. The 457 

numerical experiments were performed on meshes with N  200 and 3,000 cells. Figs. 9(c) and 9(d) 458 

show the results at t = 0.2 s, where it can be seen that both linear and nonlinear waves have been 459 

generated stably and correctly. Almost identical results are obtained on the coarse and fine meshes, 460 

indicating that the higher order scheme works well in both cases of the linear and nonlinear waves. The 461 

linear small amplitude pulse is reproduced without contamination from the truncation error at low 462 

resolution (Fig. 9(c)). The front façade of the large amplitude, nonlinear waves steepens (Fig. 9(d)). 463 

When the wave propagating to the east passes over the hump, its amplitude slightly decreases, and small 464 

amplitude undulations are generated, propagating westward (Figs. 9(c) and 9(d)).   465 

 466 



 467 

Fig. 9. Small perturbation applied to still water. Topography and initial free surface elevation with: (a) 468 

small amplitude, 0.001  m; and (b) large amplitude, 0.2  m perturbations. Free surface elevation 469 

profiles at 0.2t  s for: (c) 0.001  m; and (d) 0.2  m. Circular dots and solid line are predictions 470 

on meshes with 200 and 3000 cells respectively. Dotted line represents the initial condition.  471 

 472 

4.2.4. Tidal Flow 473 

To check that the equations remain well-balanced in the present solver, we consider a benchmark 474 

test proposed by Bermúdez and Vázquez-Cendón (1994) whereby a long, small-amplitude tidal wave 475 

is simulated on variable bed topography. The domain lies in the range [0, 14,000]x  , and the 476 

topography and initial conditions are 477 

40 4
( ) 10 10sin ,

14,000 14,000 2

x x
b x

  
    

 
  (45) 478 

( ,0) 60.5 ( ) and ( ,0) 0.h x b x U x     (46) 479 

The inflow depth and outflow velocity boundary conditions are  480 



4
( 0, ) 64.5 4sin and ( 14,000, ) 0.

86,400 2

t
h x t U x t

  
      

 
 (47) 481 

Here, numerical results on a mesh with cell size, 70 mx  , are compared against the following very 482 

accurate approximate solution, obtained by asymptotic analysis by Bermúdez and Vázquez-Cendón 483 

(1994). 484 

4
( , ) 64.5 ( ) 4sin

86,400 2

t
h x t b x

  
    

 
  (48) 485 

and 486 

( 14,000) 4
cos

5,400 86,400 2
( , )

4
64.5 ( ) 4sin

86,400 2

x t

U x t
t

b x

  

 

  
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 


 
   

 

.  (49) 487 

Fig. 10 shows the excellent agreement between the semi-analytical and numerical results at 7552.13t    488 

s, demonstrating that the present scheme is uncontaminated by any spurious numerical flux due to 489 

imbalance between flux and source terms in the shallow water equations, and so satisfies the well-490 

balanced conditions for unsteady flow simulation. 491 

 492 

Fig. 10. Well-balanced solutions for tidal flow over spatially varying topography at 7552.13t  s: solid 493 

lines represent semi-analytical solutions from asymptotic analysis (Bermúdez and Vázquez-Cendón, 494 

1994), and circular and triangular dots represent numerical solutions of (blue) water depth and (red) 495 

depth-averaged velocity, respectively, on a mesh with 70x  m. 496 

 497 



4.2.5. Steady Flow Over a Hump 498 

Free surface flow over a bed hump is a well-established verification test for shallow water solvers 499 

of subcritical flow, trans-critical flow without a shock, and trans-critical flow with a shock (see e.g., 500 

LeVeque, 1998; Vázquez-Cendón, 1999; Xing and Shu, 2005; Liang and Borthwick, 2009). In this case, 501 

we consider a one-dimensional open channel of length 25 m, and bed elevation profile and initial 502 

conditions (Fig. 11(a)) given by  503 

20.2 0.05( 10) if 8 12,
( )

0 otherwise,

x x
b x

    
 


  (50) 504 

and 505 

( ,0) 10, and ( ,0) 0x U x   .  (51) 506 

The following case-dependent clamped boundary conditions are assigned at the upstream and 507 

downstream ends of the channel: 508 

Case 1. Subcritical flow 509 

- upstream: 24.42 m /shU  , downstream: 2h  m.   510 

Case 2. Trans-critical flow with a shock 511 

- upstream: 20.18 m /shU  , downstream: 0.33h  m.   512 

Case 3. Trans-critical flow without a shock 513 

- upstream: 21.53 m /shU  , downstream: 
0.66 m                              if  F 1

open boundary condition otherwise

r
h


 


.   514 

In Case 3, when the downstream flow is not subcritical (i.e., 1Fr  ), zero-order open boundary 515 

conditions are used.  516 

Figs. 11(b)-11(d) shows the excellent agreement achieved between the analytical and predicted steady 517 

state free surface elevation profiles obtained at 200t  s. The numerical predictions are carried out on 518 

coarse and fine meshes of 200 and 500 cells.   519 

In all the foregoing tests, the present numerical model predictions converged properly to analytical 520 

or fine-grid solutions of the shallow water equation confirming the well-balanced, high-order, accurate 521 

nature of the scheme in the presence of flow discontinuities, flow transitions, and long-duration steady 522 



and unsteady flows. 523 

 524 

 525 

Fig. 11. Steady flow over a hump in a one-dimensional channel: (a) bed topography and initial surface 526 

elevation profile; and steady-state results at time 200t  s for (b) subcritical flow; (c) trans-critical flow 527 

with a shock; and (d) trans-critical flow without a shock.  The black solid lines display the analytical 528 

solutions, and the circular and + symbols display the numerical predictions using the present scheme 529 

on meshes of 200 and 500 cells, respectively. The red solid line shows the bed profile.   530 

 531 

4.3. Piston Boundary  532 

We now consider generation of sinusoidal, solitary, and cnoidal waves using the piston boundary 533 

condition where the piston paddle velocity is set to be the same as the local depth-averaged particle 534 

velocity of the target wave. In the numerical model, the depth averaged velocity at the piston side of the 535 

first cell next to the piston, 1U , is prescribed as a clamped boundary condition, Eq. (35). Meanwhile, 536 

the water elevation at the first cell, 1 , is determined adaptively from Eqs. (32), (33), and (34) using 537 



values from adjacent interior cells. The following tests are undertaken to check that long shallow water 538 

waves are correctly generated by the piston-sided boundary. The tank is of length 500 m, such that 539 

[0,500]x , the mesh size is 1x  m, and the time step is 0.01t  s. 540 

 541 

4.3.1. Sinusoidal Waves 542 

For simple sinusoidal wave generation, the paddle displacement time series is 543 

sin( ),px a t   (52) 544 

where a  is the paddle displacement amplitude, and   is its frequency (Dean and Dalrymple, 1991). 545 

For small-amplitude waves, the free surface elevation is given by linear wave theory equation as  546 

( , ) sin( ),a x t A x t       (53) 547 

where a   is the analytic solution of water elevation,    is the wave number, and A   is the wave 548 

amplitude, which in turn is given by Dean and Dalrymple (1991) as 549 
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  (54) 550 

A total of 22 cases were simulated using the present numerical model (Table 4). Fig. 12 shows the 551 

analytical solution and free surface elevation time history at the piston cell for Case 1, involving high-552 

frequency relatively large amplitude waves of amplitude 1.139 m, period 3.5696 s, and mean water 553 

depth 5 m. Fig. 13 shows the corresponding results for Case 15, involving lower frequency, small-554 

amplitude waves of amplitude 0.016 m, period 14.2784 s, and mean water depth 5 m. As would be 555 

expected, the larger amplitude, higher frequency waves gave rise to greater error owing to their inherent 556 

nonlinearity. 557 

 558 

Table 4. Sinusoidal wave test parameters. 559 

Case Ur H/L hs /L H/hs L (m) T (s) A (m) hs (m) 

1 6.2946 0.1226 0.269 0.4556 18.5852 3.5696 1.139 5 

2 4.1964 0.0817 0.269 0.3037 18.5852 3.5696 0.7593 5 

3 0.8393 0.0163 0.269 0.0607 18.5852 3.5696 0.1519 5 



4 0.4196 0.0082 0.269 0.0304 18.5852 3.5696 0.0759 5 

5 0.0839 0.0016 0.269 0.0061 18.5852 3.5696 0.0152 5 

6 23.3742 0.0287 0.1071 0.268 46.6962 7.1392 0.67 5 

7 11.6871 0.0143 0.1071 0.134 46.6962 7.1392 0.335 5 

8 2.3374 0.0029 0.1071 0.0268 46.6962 7.1392 0.067 5 

9 1.1687 0.0014 0.1071 0.0134 46.6962 7.1392 0.0335 5 

10 0.2337 0.0003 0.1071 0.0027 46.6962 7.1392 0.0067 5 

11 98.8524 0.013 0.0508 0.2555 98.3526 14.2784 0.6387 5 

12 49.4262 0.0065 0.0508 0.1277 98.3526 14.2784 0.3193 5 

13 24.7131 0.0032 0.0508 0.0639 98.3526 14.2784 0.1597 5 

14 4.9426 0.0006 0.0508 0.0128 98.3526 14.2784 0.0319 5 

15 2.4713 0.0003 0.0508 0.0064 98.3526 14.2784 0.016 5 

16 49.5879 0.0188 0.0723 0.2595 96.7672 12.0675 0.9082 7 

17 23.3742 0.0287 0.1071 0.268 93.3923 10.0964 1.3399 10 

18 9.2667 0.0506 0.1761 0.2874 85.1802 8.2437 2.1552 15 

19 200.232 0.0032 0.0251 0.1262 199.1772 28.5569 0.3155 5 

20 100.116 0.0016 0.0251 0.0631 199.1772 28.5569 0.1577 5 

21 50.058 0.0008 0.0251 0.0315 199.1772 28.5569 0.0789 5 

22 10.0116 0.0002 0.0251 0.0063 199.1772 28.5569 0.0158 5 

Ur is Ursell number, H is wave height (=2A), A is wave amplitude, L is wavelength, hs is still-water depth, and T 560 
is wave period. 561 

 562 

 563 

 564 

Fig. 12. Relatively large amplitude, high frequency sinusoidal waves (case 1, 1.139A  m, 565 

3.5696T  s, 5sh  m): (a) free surface elevation time series at piston-sided first cell; (b) relative error 566 

based on (a); and (c) wave generation and propagation in the phase plane. The red dashed line indicates 567 



the interface between main (upper) and paddle (lower) sub-domains. 568 

 569 

 570 

Fig. 13. Small-amplitude, low frequency sinusoidal waves (case 15, 0.016A  m, 14.2784T   s, 571 

5sh  m): (a) free surface elevation time series at piston-sided first cell; (b) relative error based on (a); 572 

and (c) wave generation and propagation in the phase plane. The red dashed line indicates the interface 573 

between main (upper) and paddle (lower) sub-domains. 574 

 575 

4.3.2. Solitary Waves 576 

We now consider the generation of a solitary wave, with free surface profile given by 577 

2( , ) sech ( ( ))a sx t H x Ct h    ,   (55) 578 

where sh   is the still water depth, H   is the wave height of the solitary wave, the wave number579 

33 / (4 )sH h  , and the wave celerity ( )sC g H h    (Goring, 1978). In the numerical model, the 580 

paddle displacement signal required to produce the foregoing solitary wave is obtained using the 581 

Newton method by solving the implicit equation 582 

tanh( ( ))p p

H
x x Ct

h



  .  (56) 583 

Table 5 lists five cases that were simulated. Fig. 14 and Fig. 15 show the results obtained for a large 584 

wave height ( 1H  m), short duration ( 10.5729T  s) solitary wave and small wave height ( 0.05H   585 

m), long duration ( 51.53936T  s) solitary wave, both propagating over water of still depth 5 m. In 586 



both cases, reasonable agreement is achieved between the numerical predictions and analytical solution. 587 

Again, as would be expected, the larger wave height and shorter the period of the wave, the greater the 588 

error. 589 

 590 

Table 5. Solitary wave test parameters. 591 

Cases Ur H/L hs /L H/hs L (m) T (s) H (m) hs (m) 

1 52.63789 0.012328 0.06164 0.2 81.11557 10.5729 1 5 

2 52.63789 0.004359 0.043586 0.1 114.7147 15.61721 0.5 5 

3 52.63789 0.001103 0.027566 0.04 181.3799 25.39528 0.2 5 

4 52.63789 0.00039 0.019492 0.02 256.51 36.26475 0.1 5 

5 52.63789 0.000138 0.013783 0.01 362.7599 51.53936 0.05 5 

Ur is Ursell number, H is wave height, L is wavelength, hs is still-water depth, and T is wave period. 592 

 593 

 594 

Fig. 14. Relatively large wave height, short duration solitary wave (case 1, 1H  m, 10.5729T  s, 595 

5sh  m): (a) free surface elevation time series at piston-sided first cell; (b) relative error based on (a); 596 

and (c) wave generation and propagation in the phase plane. The red dashed line indicates the interface 597 

between main (upper) and paddle (lower) sub-domains. 598 

 599 



 600 

Fig. 15. Small wave height, long duration solitary wave (case 5, 0.05H  m, 51.53936T  s, 5sh   601 

m): (a) free surface elevation time series at piston-sided first cell; (b) relative error based on (a); and (c) 602 

wave generation and propagation in the phase plane. The red dashed line indicates the interface between 603 

main (upper) and paddle (lower) sub-domains. 604 

 605 

4.3.3. Cnoidal Waves 606 

As a periodic solution of the Korteweg–de Vries (KdV) equation, the time-dependent free surface 607 

profile of a cnoidal wave may be written (Korteweg and de Vries, 1895; Svendsen, 1974): 608 

2( , ) {2 }a t s

m

x t
x t y h H cn K

L T


 
    

 
,  (57) 609 

where a  is the analytic solution of water elevation, ty  is the height of the wave trough above a datum, 610 

sh  is the still water depth, H  is the wave height, cn  is a Jacobian elliptic function, ( )K K m  is a 611 

complete elliptic integral of the first kind in which m is the elliptic parameter, L  is the wave length 612 

and T  is the wave period. For given depth sh , the cnoidal wave is determined knowing any two among 613 

L (or T ), H , and m , where the relationship between the variables is as follows: 614 

( )t s

H
y K E h H

Km
    ,  (58) 615 
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and 617 

2
2

3

16

3s

HL
K m

h
 ,  (60) 618 

where E  is the complete elliptic integral of the second kind. The paddle displacement signal required 619 

to produce this cnoidal wave is obtained using the Newton method from the following implicit equation, 620 

( ) ( ) ( ) (1 )
2

p t s m
s

L H
x t y h E m

Kh m
  

 
     

 
,  (61) 621 

where  2 / /pK t T x L    , and ( )
m

E    is the incomplete elliptic integral of the second kind 622 

(Goring, 1978). Table 6 lists the 23 cases tested. Fig. 16 and Fig. 17 display results for a large wave 623 

height, high frequency cnoidal waves (case 7: 1H   m, 10.9553T   s, 5sh   m) and small wave 624 

height, low frequency cnoidal waves (case 9: 0.1H  m, 41.8746T  s, 5sh  m). Very satisfactory 625 

agreement is achieved between the analytical solution and numerical predictions, with larger errors 626 

obtained for the higher wave height and frequency case. 627 

 628 

Table 6. Cnoidal wave test parameters. 629 

Cases Ur H/L hs /L H/hs L (m) T (s) H (m) hs (m) m 

1 35.3351 0.0053 0.0532 0.1 93.9882 12.3665 0.5 5 0.92 

2 35.3351 0.015 0.0752 0.2 66.4597 8.1079 1 5 0.92 

3 42.856 0.0137 0.0683 0.2 73.1915 8.7764 1 5 0.95 

4 42.856 0.008 0.0572 0.14 87.4806 11.0194 0.7 5 0.95 

5 42.856 0.0012 0.0306 0.04 163.6613 22.5095 0.2 5 0.95 

6 42.856 0.0002 0.0153 0.01 327.3226 46.295 0.05 5 0.95 

7 72.1128 0.0105 0.0527 0.2 94.9426 10.9553 1 5 0.99 

8 72.1128 0.0037 0.0372 0.1 134.2692 17.1371 0.5 5 0.99 

9 72.1128 0.0003 0.0167 0.02 300.235 41.8746 0.1 5 0.99 

10 72.1128 0.0001 0.0118 0.01 424.5964 59.9144 0.05 5 0.99 

11 72.1128 0.0147 0.0589 0.25 33.9677 5.9136 0.5 2 0.99 

12 72.1128 0.0037 0.0372 0.1 53.7077 10.8385 0.2 2 0.99 

13 72.1128 0.0013 0.0263 0.05 75.9541 16.1868 0.1 2 0.99 

14 72.1128 0.0005 0.0186 0.025 107.4153 23.5513 0.05 2 0.99 

15 31.9035 0.002 0.0396 0.05 50.5201 10.9701 0.1 2 0.9 

16 31.9035 0.0056 0.056 0.1 35.7231 7.4718 0.2 2 0.9 

17 124.87 0.0112 0.0447 0.25 44.6981 7.5022 0.5 2 0.999 



18 124.87 0.0028 0.0283 0.1 70.6739 14.0202 0.2 2 0.999 

19 124.87 0.001 0.02 0.05 99.948 21.1076 0.1 2 0.999 

20 191.4429 0.0008 0.0162 0.05 123.7555 25.9909 0.1 2 0.9999 

21 191.4429 0.0023 0.0229 0.1 87.5084 17.1802 0.2 2 0.9999 

22 272.0997 0.0007 0.0136 0.05 147.5397 30.8701 0.1 2 0.99999 

23 2081.323 0.0007 0.0069 0.1 288.5358 54.9794 0.2 2 1 

Ur is Ursell number, H is wave height, L is wavelength, hs is still-water depth, T is wave period, and m is a shape 630 
factor also called elliptic parameter. The larger the value of m, the sharper the wave profile. 631 

 632 

 633 

Fig. 16. Relatively large wave height, high frequency cnoidal waves (case 7, 1H  m, 10.9553T  s, 634 

5sh  m): (a) free surface elevation time series at piston-sided first cell; (b) relative error based on (a); 635 

and (c) wave generation and propagation in the phase plane. The red dashed line indicates the interface 636 

between main (upper) and paddle (lower) sub-domains. 637 

 638 



 639 

 Fig. 17. Small wave height, low frequency cnoidal waves (case 9, 0.1H  m, 41.8746T  s, 5sh 640 

m): (a) free surface elevation time series at piston-sided first cell; (b) relative error based on (a); and (c) 641 

wave generation and propagation in the phase plane. The red dashed line indicates the interface between 642 

main (upper) and paddle (lower) sub-domains. 643 

 644 

4.3.4. Error Analysis and the Appropriate Usage Criterion for the Piston Paddle 645 

The trend in errors is examined for the fifty cases considered; i.e., 22 sinusoidal, 5 solitary, and 23 646 

cnoidal waves. The relative error is determined from: 647 

1*
( , )

( , )

n

a p n

n

a p n

x t

x t

 





 ,   (62) 648 

where n  is the time level, nt  is time associated with n , *

n  is relative error at time nt , 1

n  is the 649 

numerically predicted water elevation at the first cell at time nt , and ( , )a p nx t  is the analytic solution 650 

of water elevation at the piston paddle; obtained from Eqs. (53), (55), and (57) for sinusoidal, solitary, 651 

and cnoidal waves. Table 7 lists correlations between 1L  / L   errors and non-dimensional Ursell 652 

number, wave steepness, and nonlinearity parameters. Here, the relative errors ( 1L , L ) exhibit greatest 653 

correlation with wave steepness, /H L (Table 7, Figs. 19(a) and 19(b)). In Stokes perturbation theory, 654 

the velocity potential is expressed as 655 

* * * 2 *

1 2 3           (63) 656 



where the wave steepness, /H L   , is the perturbation parameter and superscript * represents 657 

dimensionless form. The dynamic boundary condition (DBC) is thus given by (Dean and Dalymple, 658 

1991),  659 

* * 2 * * 2 *
* 2 *
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( / ) ( / )
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x z
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t

  
 
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    
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,  (64) 660 

which simplifies to hydrostatic pressure when the wave steepness is very small (in accordance with the 661 

hydrostatic assumption in the shallow water equations). Table 7 indicates that /sh L  is less important 662 

in determining accuracy than wave steepness, implying that the hydrostatic approximation ( / 1H L ) 663 

is a more important influence factor than the long wave approximation ( / 0.05sh L   ) in wave 664 

generation in the region of the shallow water assumptions. In other words, the numerical piston paddle 665 

generates accurate waveforms provided the wave steepness is sufficiently small that the hydrostatic 666 

assumption is satisfied. Table 7 also indicates that the errors correlate with   
2

/ /sH L h L . This is 667 

reasonable because the difference between the non-dimensional Boussinesq and shallow water 668 

momentum equations can be expressed by the dispersion term    * * *

2 */ /s x x t
H L h L U  (Goring, 1978). 669 

Fig. 18 depicts the almost linear relationships between the relative errors and the two non-dimensional 670 

parameters (wave steepness and   
2

/ /sH L h L  ). The scatter plots indicate that stable, highly 671 

accurate waves are generated by the numerical wave tank, provided the non-dimensional numbers are 672 

suitably small. For example, to generate shallow water waves with a relative 1L  -error < 1%, it is 673 

necessary to ensure 2/ 3.97 10sH h    and   
2 3/ / 1.42 10sH L h L    (Table 8 and Fig. 19).  674 

 675 

Table 7. Correlations between 1L  and L  errors and non-dimensional numbers 676 

 Ur /H L  /sh L  / sH h  

2

shH

L L

  
  
  

 

1L  -0.121 0.995 0.634 0.812 0.925 

L  -0.103 0.990 0.611 0.843 0.909 

Ur is Ursell number, H is wave height, L is wavelength, and hs is still-water depth. 677 

 678 



 679 

Fig. 18. Relative errors plotted against non-dimensional numbers: (a) 1L  error with respect to /H L680 

(wave steepness); (b) L  error with respect to /H L (wave steepness); (c) 1L  error with respect to 681 

  
2

/ /sH L h L ; and (d) L  error with respect to   
2

/ /sH L h L . 682 

 683 

 684 

 685 

 686 

 687 

 688 



Table 8. Relative error in non-dimensional numbers, /H L   and   
2

/ /sH L h L  , from linear 689 

regression 690 

  Error 5% 1% 0.5% 0.1% 

H/L 

1L  1.63E-01 3.97E-02 2.16E-02 5.26E-03 

L
 9.27E-02 2.08E-02 1.09E-03 2.46E-03 

2

shH

L L

  
  
  

 
1L  2.55E-02 1.42E-03 3.98E-04 2.20E-05 

L
 1.29E-02 4.80E-04 1.20E-04 4.53E-06 

 691 

 692 

Fig. 19. Example of user criteria for 1% threshold in relative 1L  error with respect to (a) /H L  (wave 693 

steepness); and (b)   
2

/ /sH L h L  . Circular, triangular and squared symbols represent sinusoidal, 694 

solitary and cnoidal waves; the red solid lines are regression curves; and the blue dashed lines indicate 695 

the threshold of 1% in relative 1L  error. 696 

 697 

 698 

5. Conclusions  699 

A high-order numerical wave tank has been presented based on the shallow water equations to 700 

simulate long wave phenomena that satisfy the hydrostatic pressure assumption. The governing 701 

equations were formulated as a well-balanced hyperbolic system and solved using a fifth-order WENO 702 

scheme in space and third-order Runge-Kutta method in time, with a specialized cut-off algorithm used 703 

to prevent accumulation of round-off errors. The resulting high-order scheme was computationally 704 



efficient, and produced accurate, stable, long-duration simulations. To model a piston-type paddle, the 705 

computational domain was divided into two sub-domains, one a moving sub-domain adjacent to the 706 

paddle, the other a fixed sub-domain representing the remainder of the tank. A mapped version of the 707 

shallow water equations was solved using a modified version of the fifth-order WENO method in the 708 

sub-domain adjacent to the paddle, and specialized interface boundary conditions implemented at the 709 

join between the two sub-domains. Error analysis suggested criteria for wave simulations by the present 710 

numerical model. The model has been verified extensively. Still water tests demonstrated the well-711 

balanced C-property of the numerical scheme. Fifth-order accuracy for the smooth solution was 712 

demonstrated for a test case originally devised by Xing and Shu (2005). Discontinuous and trans-critical 713 

flow tests confirmed the shock-capturing ability of the present solver, and its correct reproduction of 714 

steady and time-dependent flows. The numerical wave tank was used to generate sinusoidal, solitary, 715 

and cnoidal waves; in each case the model predictions agreed well with analytical solutions, provided 716 

criteria that limited wave steepness and dispersion were met. Even so, in a few cases, the model tended 717 

to underestimate slightly the wave amplitude owing to the hydrostatic assumption, causing the wave 718 

steepness and dispersion criteria to be over-restrictive. Future development of the high-order numerical 719 

wave tank should therefore include extension to non-hydrostatic pressure. 720 

 721 

Appendix. 722 

Appendix A. Propositions 723 

The following propositions relate to the properties required by numerical schemes to satisfy the C-724 

property for Liang and Borthwick (2009)’s version of balanced shallow water equations (Eqs. (1) and 725 

(6)). Propositions 1 and 2 refer to well-balanced conditions on Cartesian and linear-mapped grids, 726 

respectively. 727 

 728 

Proposition 1. If the same linear operator W   for approximating an x-derivative,  ( )W
x


  


 , 729 

satisfying (const.) 0W   is applied to the each x-derivative term in Eq. (6), the exact C-property is 730 



satisfied. Here (const.) 0W    is a kind of consistency condition, noting that the x-derivative of a 731 

constant function is by definition zero.  732 

 733 

Proof.  Substituting the stationary condition Eq. (4) into Eqs. (1) and (6), we obtain 734 

21
( 2 )

2

b
g b g

x x
  

  
   
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   (65) 735 

for stationary cases. Applying the linear operator ( )W   to each x-derivative term in Eq. (65), 736 

21
( 2 ) ( )

2
W g b g W b  
 

   
 

   (66) 737 

By linearity of the operator W , this becomes 738 

 21
( ) ( )

2
g W g W b g W b    1    (67) 739 

which reduces to ( ) 0W 1 . Thus, if an identical linear numerical scheme satisfying (const.) 0W   is 740 

applied to every x -differential term in Eqs. (1) and (6), the model satisfies the exact C-property. □ 741 

 742 

Proposition 2. If the same linear operator W  satisfying consistency is applied to each x -differential 743 

term in Eq. (29), the equation satisfies the C-property. 744 

 745 

Proof. When Eq. (4) is applied to Eq. (29), Eq. (66) is obtained. The subsequent procedure is identical 746 

to that of Proposition 1. □ 747 

 748 

Note that Eq. (4) is trivial in the mass conservation part of Eq. (29) because all the x -derivative terms 749 

in Eq. (29) satisfy the conservation property. This means that the linear numerical operator satisfying 750 

exact mass conservation implies consistency for the differential operators. 751 

 752 



Appendix B. L1 and L∞ Errors  753 

The 1L  and L  errors are defined as: 754 

1

1

1 M

n n

ntotal

L t
t




     (68) 755 

And 756 

max n
n

L      (69) 757 

where n   is the time index, M   is the number of time steps in the simulation, totalt   is the total 758 

simulation time (
1

M

total nn
t t


  ), nt  is the n -th time step, and n  is the error at time nt . 759 
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