196 research outputs found

    Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    Get PDF
    Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance distribution with other star-forming regions, and to constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10}, respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.Comment: 16 pages, 13 figure

    Abundances and Isotope Ratios in the Magellanic Clouds: The Star Forming Environment of N113

    Full text link
    With the goal of deriving the physical and chemical conditions of star forming regions in the Large Magellanic Cloud (LMC), a spectral line survey of the prominent star forming region N113 is presented. The observations cover parts of the frequency range from 85 GHz to 357 GHz and include 63 molecular transitions from a total of 16 species, among them spectra of rare isotopologues. Maps of selected molecular lines as well as the 1.2 mm continuum distribution are also presented. Molecular abundances in the core of the complex are found to be consistent with a photon dominated region (PDR) that is nitrogen deficient, with the potential exception of N2H+. Densities range from 5x10^3 cm-3 for CO to almost 10^6 for CS and HCN, indicating that only the densest regions provide sufficient shielding even for some of the most common species. An ortho- to para-H_2CO ratio of ~3 hints at H_2CO formation in a warm (>=40 K) environment. Isotope ratios are 12C/13C ~ 49+-5, 16O/18O ~ 2000+-250, 18O/17O ~ 1.7+-0.2 and 32S/34S ~ 15. Agreement with data from other star forming clouds shows that the gas is well mixed in the LMC . The isotope ratios do not only differ from those seen in the Galaxy. They also do not form a continuation of the trends observed with decreasing metallicity from the inner to the outer Galaxy. This implies that the outer Galaxy, is not providing a transition zone between the inner Galaxy and the metal poor environment of the Magellanic Clouds. A part of this discrepancy is likely caused by differences in the age of the stellar populations in the outer Galaxy and the LMC.Comment: 50 pages, 13 figures, accepted for publication in Ap

    Herschel observations of deuterated water towards Sgr B2(M)

    Get PDF
    Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr~B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5×10112.5\times 10^{-11}) in the outer envelope at temperatures below 100~K through a medium abundance (1.5×1091.5\times 10^{-9}) in the inner envelope/outer core, at temperatures between 100 and 200~K, and finally a high abundance (3.5×1093.5\times 10^{-9}) at temperatures above 200~K in the hot core.Comment: A&A HIFI special issue, accepte

    Systematic Molecular Differentiation in Starless Cores

    Get PDF
    (Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.Comment: 25 pages, 9 figures, accepted by Ap

    APEX 1 mm line survey of the Orion Bar

    Get PDF
    Unbiased molecular line surveys are a powerful tool for analyzing the physical and chemical parameters of astronomical objects and are the only means for obtaining a complete view of the molecular inventory for a given source. The present work stands for the first such investigation of a photon-dominated region. The first results of an ongoing millimeter-wave survey obtained towards the Orion Bar are reported. The APEX telescope in combination with the APEX-2A facility receiver was employed in this investigation. We derived the physical parameters of the gas through LVG analyses of the methanol and formaldehyde data. Information on the sulfur and deuterium chemistry of photon-dominated regions is obtained from detections of several sulfur-bearing molecules and DCN.Comment: APEX A&A special issue, accepte

    TIMASSS: The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey. I. Observations, calibration and analysis of the line kinematics

    Get PDF
    While unbiased surveys observable from ground-based telescopes have previously been obtained towards several high mass protostars, very little exists on low mass protostars. To fill up this gap, we carried out a complete spectral survey of the bands at 3, 2, 1 and 0.8 mm towards the solar type protostar IRAS16293-2422. The observations covered about 200\,GHz and were obtained with the IRAM-30m and JCMT-15m telescopes. Particular attention was devoted to the inter-calibration of the obtained spectra with previous observations. All the lines detected with more than 3 sigma and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. More than 4000 lines were detected (with sigma \geq 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (~2/3) of the lines are weak and due to complex organic molecules. The analysis of the profiles of more than 1000 lines belonging 70 species firmly establishes the presence of two distinct velocity components, associated with the two objects, A and B, forming the IRAS16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 Mo object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 Mo. The difference in the rest velocities of both objects is consistent with the hypothesis that the source B rotates around the source A. This spectral survey, although obtained with single-dish telescope with a low spatial resolution, allows to separate the emission from 2 different components, thanks to the large number of lines detected. The data of the survey are public and can be retrieved on the web site http://www-laog.obs.ujf-grenoble.fr/heberges/timasss.Comment: 41 pages (26 pages of online Tables), 7 Tables and 6 Figure

    The distribution of water in the high-mass star-forming region NGC 6334I

    Get PDF
    We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star forming regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of 200 K, whereas water in the foreground component is predominantly in the ortho- and para- ground states. The abundance of water varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5(0.8)).Comment: 7 pages, 3 figures, accepted by A&
    corecore