4,024 research outputs found

    Numerical Analysis of Thermal and Aerodynamic Fields in a Channel with Cascaded Baffles

    Get PDF
    A computational fluid dynamic analysis of thermal and aerodynamic fields for an incompressible steady-state flow of a Newtonian fluid through a two-dimensional horizontal rectangular section channel with upper and lower wall-attached, vertical, staggered, transverse, cascaded rectangular-triangular (CRT), solid-type baffles is carried out in the present paper using the Commercial, Computational Fluid Dynamics, software FLUENT. The flow model is governed by the Reynolds averaged Navier-Stokes (RANS) equations with the SST k-ω turbulence model and the energy equation. The finite volume method (FVM) with the SIMPLE-discretization algorithm is applied for the solution of the problem. The computations are carried out in the turbulent regime for different Reynolds numbers. In this study, thermo-aeraulic fields, dimensionless axial profiles of velocity, skin friction coefficients, local and average heat transfer coefficients, and thermal enhancement factor were investigated, at constant surface temperature condition along the heated upper wall of the channel, for all the geometry under investigation and chosen for various stations. The impact of the cascaded rectangular-triangular geometry of the baffle on the thermal and dynamic behavior of air is shown and this in comparing the data of this obstacle type with those of the simple flat rectangular-shaped baffle. This CFD analysis can be a real application in the field of heat exchangers, solar air collectors, and electronic equipments

    Aerodynamics and Heat Transfer over Solid-Deflectors in Transverse, Staggered, Corrugated-Upstream and Corrugated-Downstream Patterns

    Get PDF
    Computational fluid dynamic simulations were conducted to analysis the influences of two different deflector orientations on turbulent forced-convection flow and skin friction loss of two-dimensional horizontal rectangular cross section channels with upper and lower wall-attached corrugated baffles. The governing flow equations, i.e., continuity, momentum, and energy, were numerically solved by the Finite Volume Method (FVM) using the Semi-Implicit Method for Pressure Linked Equation (SIMPLE) discretization formulation. The help of the CFD code FLUENT was employed to solve the dynamic and thermal behavior of air in the whole domain under investigation. The flow rate in terms of Reynolds number is ranged from 5,000 to 32,000. The obtained results show that augmenting the Reynolds number makes the dynamic thermo energy field redirect in the vicinity of deflector corners, and forces an augmentation in the thermal transfer rate from baffles

    Analyse numérique de la convection forcée turbulente dans les tubes munis des chicanes transversales

    No full text
    International audienceOn présente une étude numérique du comportement dynamique et thermique d'un écoulement d'air turbulent dans un canal horizontal de section rectangulaire muni des chicanes transversales. Les équations gouvernantes, basées sur le modèle k-ε, sont résolues par la méthode des volumes finis à l'aide de l'algorithme SIMPLE. Les profils de vitesse axiale et les champs de vitesse et de température ainsi que la distribution du nombre de Nusselt sont présentés pour un cas d'exemple type

    The Solar Air Channels: Comparative Analysis, Introduction of Arc-shaped Fins to Improve the Thermal Transfer

    Get PDF
    The problem under investigation contains a computational simulation of a specific heat exchanger with complex geometry fins. The problem solved is potentially interesting for researchers and engineers working on solar collectors and aerospace industry. It is known that heat transfer enhancement can be achieved by creating longitudinal vortices in the flow. These vortices can be generated by arc-shaped fins, and a computational analysis of such solar air channels is not a simple task. Therefore, we used a present-day commercial CFD code to solve the problem. The mathematical problem including the main equations and their explanation, as well as the numerical procedure was presented. The impact of arc-fins’ spacings on streamlines and temperature distributions was completely investigated, as well as the heat transfer rate, pressure drop and thermal enhancement factor. The Nusselt number (Nu) and friction loss (f) values of the solar air channel at AR = 1.321 (aspect ratio of channel width-to-height) and S = Pi/2 are found to be around 11.963% and 26.006%; 21.645% and 40.789%; 26.196% and 50.314%; and 30.322% and 58.355% higher than that with S = 3Pi/4, Pi, 5Pi/4 and 3Pi/2, respectively. Importantly, the arc-fins with Re = 12,000 at S = Pi/2 showed higher thermal enhancement performance than the one at S = 3Pi/4, Pi, 5Pi/4 and 3Pi/2 around 2.530%, 6.576%, 6.615% and 6.762%, respectively. This study contains the information which seems to be important for practical engineers

    A Review of Solar Energy Collectors: Models and Applications

    Get PDF
    A current study and discussion in detail about many solar energy collectors of various types, components, classifications and configurations, through the analysis of their performance, is our aim through this review paper. The effects of the geometrical parameters of the solar air collectors as well as the functioning parameters on heat transfer and fluid flow processes were also discussed in detail. The numerical, analytical, and experimental analyses on different models of flat plate solar air collectors with various thermal transfer enhancement strategies were shown in various stages, i.e., modelling, control, measurement, and visualization of airfield, determination of heat transfer, control of friction loss and pressure drop, and evaluation of the thermal performance by the measurement of the augmentation in the temperature of the working fluid at a given solar irradiance and under given flow rate. We concluded this review by identifying the various applications possible for the solar air collectors such as heating and cooling of houses, drying agricultural food materials, and water desalination process

    Analysis of Fluid Dynamics and Heat Transfer in a Rectangular Duct with Staggered Baffles

    Get PDF
    This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vortices to improve the mixing and consequently the heat transfer. The analyses are conducted with the Commercial CFD software FLUENT using the finite volume method for Reynolds number varying from 12,000 to 32,000. The numerical results are presented in terms of streamlines, velocity-magnitude, x-velocity, y-velocity, dynamic pressure coefficient, turbulent kinetic energy, turbulent viscosity, turbulent intensity, temperature field, coefficient and factor of normalized skin friction, local and average numbers of normalized Nusselt, and thermal performance factor. The insertion of the S-shaped baffles in the channel not only causes a much high friction loss, f/f0 = 3.319 - 32.336, but also provides a considerable augmentation in the thermal transfer rate in the channel, Nu/Nu0 = 1.939 - 4.582, depending on the S-baffle orientations and the Reynolds number. The S-upstream baffle provides higher friction loss and heat transfer rate than the S-Downstream around 56.443 %, 55.700 %, 54.972 %, 54.289 % and 53.660 %; and 25.011 %, 23.455 %, 21.977 %, 20.626 %, and 19.414 % for Re = 12,000, 17,000, 22,000, 27,000, and 32,000, respectively. In addition, the result analysis shows that the optimum thermal performance factor is around 1.513 at the highest Reynolds number and S-downstream

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore