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Abstract. This computational fluid dynamic analysis attempts to simulate the incompressible steady fluid flow and 
heat transfer in a solar air channel with wall-mounted baffles. Two ꞌSꞌ-shaped baffles, having different orientations, 
i.e., ꞌSꞌ-upstream and ꞌSꞌ-downstream, were inserted into the channel and fixed to the top and bottom walls of the 
channel in a periodically staggered manner to develop vortices to improve the mixing and consequently the heat 
transfer. The analyses are conducted with the Commercial CFD software FLUENT using the finite volume method 
for Reynolds number varying from 12,000 to 32,000. The numerical results are presented in terms of streamlines, 
velocity-magnitude, x-velocity, y-velocity, dynamic pressure coefficient, turbulent kinetic energy, turbulent 
viscosity, turbulent intensity, temperature field, coefficient and factor of normalized skin friction, local and average 
numbers of normalized Nusselt, and thermal performance factor. The insertion of the S-shaped baffles in the 
channel not only causes a much high friction loss, f/f0 = 3.319 - 32.336, but also provides a considerable 
augmentation in the thermal transfer rate in the channel, Nu/Nu0 = 1.939 - 4.582, depending on the S-baffle 
orientations and the Reynolds number. The S-upstream baffle provides higher friction loss and heat transfer rate 
than the S-Downstream around 56.443 %, 55.700 %, 54.972 %, 54.289 % and 53.660 %; and 25.011 %, 23.455 %, 
21.977 %, 20.626 %, and 19.414 % for Re = 12,000, 17,000, 22,000, 27,000, and 32,000, respectively. In addition, 
the result analysis shows that the optimum thermal performance factor is around 1.513 at the highest Reynolds 
number and S-downstream. 

Keywords: Mathematical modelling; Numerical simulation; Heat transfer; Rectangular channel; S-baffles. 

1. Introduction 

One of the most effective passive strategies of enhancing the convective heat transfer rate in smooth air channels (SAC), 
such as ꞌheating [1], cooling [2] or solar [3]ꞌ ducts, at ꞌlow [4], moderate [5] or high [6]ꞌ Reynolds numbers, is the use of 
ꞌattached [7], semi-attached [8] or detached [9]ꞌ, ꞌtransverse [10] or longitudinal [11]ꞌ, ꞌparallel [12], orthogonal [13] or inclined 
[14]ꞌ, ꞌsolid [15], perforated [16] or porous [17]ꞌ, and ꞌsimple [18], corrugated [19] or shaped [20-30]ꞌ type obstacles, known as 
ꞌvortex generators [31]ꞌ, ꞌvortex-flow devices [32]ꞌ, ꞌturbulators [33]ꞌ, ꞌdeflectors [34]ꞌ, turbulence promoters [35]ꞌ or 
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ꞌdisturbances [36]ꞌ, such as ꞌribs [37]ꞌ, ꞌfins [38]ꞌ or ꞌbaffles [39]ꞌ, placing on [40] or near [41] the insulated [42] and/or heated 
[43] channel walls with in-line [44] or staggered manners [45]. This is because the obstacle helps to interrupt the 
hydrodynamic and thermal boundary layers and to force a vortex downstream [46]. The vortex creates a rotating motion within 
the flow stream, which causes a rapid transfer of fluid parcels to and from the heat transfer surface [47]. This technique of 
improvement of the thermal transfer is commonly employed in many various practical engineering and industrial applications 
such as shell-and-tube heat exchangers with segmental baffle [48], solar energy collectors [49], gas turbine cooling systems 
[50], and electronic packages [51], therefore, the literature on this topic is widely apparent.  

Other similar studies can be found in literature as Ghalambaz et al. [52], Zargartalebi et al. [53], Noghrehabadi et al. [54-
57], Sabour et al. [58] and Ghalambaz et al. [59]. In those works, various aspect ratio geometries and various boundary 
conditions were employed. 

Two S-shaped baffles, having different orientation, i.e., S-upstream and S-downstream, were inserted into the channel and 
fixed to the top and bottom walls of the channel in a periodically staggered manner to develop vortices to improve the mixing 
and consequently the heat transfer. The suggested shape and orientations were not investigated previously. The present study 
aims to explore the impact of this design on the phenomenon of thermal transfer inside a constant temperature-surfaced 
rectangular cross section channel. The Reynolds number is ranged from 12 × 103 to 3.2 × 104. The analyses are checked 
through the computational-fluid-dynamic simulations by means of the Commercial CFD software Fluent. 

2. Mathematical modelling  

Figure 1 depicts a schematic representation of the physical model. Demartini et al. [20] conducted an experimental 
analysis which served as the basis for the detailed structural parameters used. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Channel under study with (a) S-upstream and/or (b) S-downstream baffles. 
 
The computational analysis is performed in a two-dimensional field, which represents a constant temperature-surfaced 

rectangular cross section channel of L = 0.554 m length and H = 0.146 m height. Two attached, transverse, orthogonal, solid, 
S-shape, modern baffles are introduced within the channel; they are arranged on the hot top and bottom channel surfaces in a 
periodically staggered manner in order to produce vortices which have a substantial influence on the turbulence intensity of the 
flow, thus causing a larger heat transfer enhancement in the entire domain under investigation. Two various S-baffle 
orientations are suggested in this analysis, which are referred as cases A and B. In case A, an S-shaped baffle pointed towards 
the upstream end is considered, called ꞌS-upstreamꞌ (see Fig. 1a) and in case B, an S-shaped baffle pointed towards the 
downstream end is considered, called ꞌS-downstreamꞌ (see Fig. 1b). The air, whose Prandtl number (Pr) is 0.71, is the working 
fluid used, and the Reynolds numbers considered range from 12,000 to 32,000. 

The computational analysis of fluid dynamics and turbulent forced-convection flow in the whole domain is developed 
under the following conditions: (i) the steady two-dimensional fluid flow and the thermal transfer, (ii) the constant property 
incompressible Newtonian fluid, (iii) the body forces and viscous dissipation are ignored, and (iv) the mode of radiation heat 
transfer is negligible. 

Based on the above-mentioned conditions, the mathematical model of the turbulent forced-convection airflow is governed 
by the Reynolds averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence model [66] and the energy equation. 
Regarding the Cartesian coordinate, these equations can be written in the following compact form: 
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where ϕ is a vector composed of the scalars u, v, T, k, and ε; u and v stand for the mean velocities towards the x and y axis, 
respectively; T is the temperature; k and ε stand for kinetic energy and turbulent dissipation rate, respectively; Γϕ and Sϕ 
represent the turbulent diffusion coefficient and the source term associated with the general variable ϕ in this order. The 
expressions of ϕ, Γϕ and Sϕ, are presented for:   
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Momentum equation in X-direction 
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Momentum equation in Y-direction 
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Energy equation  
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k-turbulent kinetic energy equation 
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ε-turbulent dissipation rate equation 
                                                                                        (7a) 


 

 t 
                                                                           (7b) 

  
 

k
fCGfCS

 .2211                                                                  (7c) 

with 


















































222

.2.2
y

u

x

v

y

v

x

u
G t                                                   (8a) 

te                                                                              (8b) 


 

²
.

k
Cft                                                                           (8c) 

Where C1ε = C3ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3, and σT = 0.85 are the turbulent constants of the model [60].  
A uniform one-dimensional velocity profile (u = Uin) is introduced at the intake of the channel (x = 0) while an atmospheric 

pressure-outlet condition is applied at the exit (x = L). No-slip and impermeability boundary conditions are applied over the 
solid boundaries. A condition of the constant surface temperature of 102°C (Tw = 375 K) is applied on the upper and lower 
walls of the channel. The temperature of air is set equal to 27°C (Tin = 300 K) at the inlet of the channel. These boundary 
conditions are presented as  

At the intake of the computational domain (x = 0) 

inUu                                                                                  (9a) 

0v                                                                                   (9b) 

inTT                                                                                  (9c) 
2

in 005.0k inU                                                                          (9d) 
21.0 inin k                                                                              (9e) 

At the channel walls (upper wall: y = H/2; lower wall: y = -H/2) 
0 vu                                                                              (10a) 
0 k                                                                             (10b) 

WTT                                                                                 (10c) 

At the fluid/solid interface 

sf TT                                                                                 (11a) 
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Where n is the normal coordinate to the wall.  
At the exit (x = L) 
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The flow Reynolds number (Re) based on the channel aeraulic diameter, 
 WHHWDh  2  ,                                                                 (13a) 

is given by  

 hDURe                                                                         (13b) 

The skin friction coefficient (Cf) is given by 
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The friction factor (f) is evaluated from the pressure drop (ΔP) as 
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where U  presents the average axial velocity of the section and τw is the shear stress to the wall. To determine the heat 
transfer rate inside the channel, the heat transfer is measured by the local Nusselt number (Nux) which can be written as  
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and the average Nusselt number (Nu) can be obtained by   
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The following expression represents the thermal enhancement factor (TEF): 

    31
00 ffNuNuTEF                                                                  (16) 

The Dittus-Boelter and Petukhov correlations [61] can be used to normalize the average Nusselt number and the friction 
factor, respectively. The quantities Nu0 and f0 are the average Nusselt number and the friction factor of the smooth channel, 
respectively. The Dittus and Boelter correlation has the following form:   

44.08.0
0 10ReforPrRe023.0 Nu                                                      (17a) 

The Petukhov correlation has the following form:   
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3. Numerical simulation  

The Commercial CFD software FLUENT is used to simulate the incompressible steady fluid flow and heat transfer in the 
computational model. The governing flow equations are integrated by the Finite Volume Method (FVM), details of which can 
be found in Patankar [62]. The QUICK numerical scheme, developed by Leonard and Mokhtari [63], is employed to discretize 
the convective terms. The SIMPLE discretization algorithm is used for the pressure velocity.  

To control the update of the computed variables at etch iteration, the under-relaxation was varied between 0.3 and 1.0 
(Nasiruddin and Kamran Siddiqui [47]). The under-relaxation factor is carefully chosen to prevent large variations in the 
source terms. The solution is assumed to be converged when the following criterion is satisfied:   
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where * denote the previews iteration value and δ is a prescribed error. For the present simulation, δ = 10-9 for ϕ ≡ (u, v, k, 
ε) and δ = 10-12 for ϕ ≡ (T) are selected.  

A quadrilateral-type structured grid in the two-directions is inserted. The grid independence tests are performed by realizing 
CFD simulations in the whole domain investigated with S-shaped baffles, using different grid systems with the number of 
mesh nodes ranging from 35 to 145 along the pipe depth and 95 to 370 along the length. The grid system with the number of 
nodes equal to 245 × 95 (in X and Y directions respectively) performs around 0.330 %, and 0.372 % deviation for the Nu and f, 
respectively, compared with the grid of size 370 × 145. Therefore, the grid cell of 245 × 95 is selected for the rest of the study.  

The precision of the computational fluid dynamic software and the correctness of the numerical approach conducted are 
verified. For a rectangular air channel with simple flat rectangular obstacles, the distributions of the axial profiles of speed and 
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the pressure coefficient along the depth of the channel are followed and shown in Fig. 2 (a) and (b), respectively. These 
numerical results are validated with the numerical and experimental results of Demartini et al. [20] for the same structural 
condition under similar operating parameters. As shown on these plots, a good agreement is obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Numerical validation of (a) axial velocity and (b) pressure coefficient for Re = 8.73 × 104. 

 
The evolutions of the Nusselt number and the friction factor as a function of the Reynolds number are also simulated for a 

smooth air channel and compared with the empirical correlation of Dittus-Boelter and Petukhov, as shown in Fig. 3 (a) and (b), 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Numerical verification of (a) Nusselt number and (b) friction factor for smooth channel with no baffle. 

 
As can be shown in Fig. 3, the present smooth channel results agree well with the available correlations with ± 3.5% in 

comparison with Dittus-Boelter correlation (1930) for the Nu0 and ± 1.15% in comparison with Petukhov correlation (1970) 
for f0. 

 

4. Results and discussion  

4.1. Streamlines  

Figure 4 (a), (b), (c), (d), and (e) shows the contour plots of streamlines for the S-upstream and S-downstream cases with 
Re = 12,000, 17,000, 22,000, 27,000, and 32,000, respectively. In both S-baffle cases, the plots reveal the existence of three 
main regions. In the first region, just the upstream of the S-baffles, the fluid is accelerated and arrives with an axial speed. At 
the approach of the S-baffles, the current lines are deflected. In the second region, located between the top of each S-baffle and 
the walls of the channel, the flow is accelerated due to the effect of cross-sectional reduction. 

In the third region, the downstream of the S-baffles, the current lines are generated by the effect of flow expansion, thus 
leaving the section formed by the S-baffles and the walls. The most important phenomenon occurring in this zone is the 
formation of a recirculating flow whose extent is proportional to the Reynolds number. The S-upstream baffle provides higher 
stream-function value than the S-downstream around 14.742 %, 14.798 %, 14.805 %, 14.752 %, and 14.720 % for Re = 12,000, 
17,000, 22,000, 27,000 and 32,000, respectively. 
 
4.2. Velocity-magnitude  

The mean velocity fields in the whole domain examined are presented in Fig. 5 (a), (b), (c), (d), and (e) for cases Re = 12,0

(a) (b) 

(a) (b) 
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00, 17,000, 22,000, 27,000, and 32,000, respectively. Both the cases of the S-baffle are also presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Streamlines for S-upstream and S-downstream cases as a function of Reynolds number. Stream-function values in kg/s. 

 
It can clearly be noticed that the values of the fluid velocity are very low in the vicinity of the two S-baffles, especially in 

the downstream regions; this is due to the presence of the recirculation zones. Far from these zones, the current lines become 
parallel, which results in the progressive development of the flow. One should also note that the velocity increases in the space 
between the end of each S-baffle and the wall of the channel. This rise in the velocity is generated first by the presence of the 
S-baffle and then by the presence of a recycling which results in a sudden change in the direction of the flow. It is also 
observed that the highest values of the velocity appear near the top of the channel, with an acceleration process that begins just 
after the second S-baffle. From the figure, it can clearly be seen that the velocity is proportional to the Reynolds number, for 
both the cases under study.  

 

4.3. X-Velocity  

Figure 6 shows the axial velocity contour plots for the flow of air in the channel for two different S-baffle orientations (S-
upstream and S-downstream). In the figure, the axial velocity is related as a function of Reynolds number (Re = 12,000, 17,000, 
22,000, 27,000, and 32,000). Note that the presence of the first S-baffle in the upper half of the channel induces a strong 
decrease in the axial velocity. Negative velocities indicate the presence of a small recirculation zone located upstream of this 
same baffle, paradoxically in the lower half, where the flow increases, and particularly in the vicinity of the passage under the 
S-baffle.   

As the velocity contour plots, the S-upstream baffles perform a greater fluid velocity than the S-downstream. Downstream 
of this same first S-baffle, two large distinct zones can be quantified, as presented in Fig. 6. The first one is an area where the 
fluid particles follow the main flow direction. 

(a) Re = 12,000 

(c) Re = 22,000 

(b) Re = 17,000 

(d) Re = 27,000 

(e) Re = 32,000 
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Fig. 5. Velocity-magnitude fields for S-upstream and S-downstream cases as a function of Reynolds number. Velocity-magnitude values in m/s. 

 
The recirculation zone is located in the second region in the vicinity of the upper right S-baffle face. The flow is reversed 

and this causes the flow to peel off at the top wall of the channel; the velocity profiles are directed in the way opposite to that 
of the flow. Upstream of the second S-baffle, note that the flow velocity, when approaching the S-baffle, is reduced in the 
lower part of the canal, whereas in the upper part, the flow begins to accelerate towards this breach above the second S-baffle. 
This limitation depends substantially on the recirculation zones, which are characterized by negative values and are located 
upstream and downstream of the second S-baffle. The vortices occur in the vicinity of these zones; they develop and increase 
the resistance to the flow very strongly. These disordered but localized movements are characterized by negative values, as 
shown in Fig. 6. 

Downstream and according to the results in Fig. 6, the speed value reaches approximately 13.850 m/s, which is 13.195 
times greater than the velocity at the inlet. These values can be reached only because of the very high recirculation to the rear 
of the second obstacle. The increase in the Reynolds number leads to an acceleration of the flow and causes a rise in the fluid 
x-velocity, indicating that the length of the vortices is proportional to the augmentation in the Re number (see Fig. 4) which 
characterizes the flow. In addition, the plots show that the S-downstream baffle has smaller x-velocity values than those of the 
S-upstream baffle, regardless of the number of Reynolds. These same plots also indicate that the x-velocities, for both S-baffle 
models, increase significantly as the number of Reynolds number.  

 
4.4. Y-Velocity  

As for the transverse component of the velocity, it is interesting to note that for both cases studied, the negative velocity 
gradients are observed at the top of the upper wall-mounted S-baffle and positive velocity gradients at the top of the lower 
wall-mounted S-baffle (Fig. 7).  

(a) Re = 12,000 

(b) Re = 17,000 

(c) Re = 22,000 

(d) Re = 27,000 

(e) Re = 32,000 
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Fig. 6. X-velocity fields for S-upstream and S-downstream cases as a function of Reynolds number. X-velocity values in m/s. 

 
In the figure, the y-velocity values are also related as a function of Reynolds number. It is seen that the y-velocity augments 

with augmenting Reynolds number in both cases and in general, the maximum y-velocity is obtained for S-upstream while the 
lowest one is for S-downstream. 
 
4.5. Dynamic pressure  

To follow more precisely the evolution of fluid flow into the airway, the contour plots of dynamic pressure fields are added 
as listed below in Fig. 8 (a)-(e). As illustrated in this figure and similar to the results in Fig. 5 (a)-(e) of the speed fields, the 
pressure values are very low next to the S-baffles, especially in the back areas, because of the existence of recirculation cells. 
In areas confined between the upper sides of the S-baffles and the inner walls of the channel, the pressure values increase. The 
coefficients of dynamic pressure are maximal next to the upper surface of the airway near the exit, also near the top left side of 
the lower wall-mounted S-baffle, due to the high speed of air flow in these regions. In the figure, it is interesting to note that 
the dynamic pressure value tends to augments with the rise of Reynolds number values for both treated S-baffle cases. The use 
of S-upstream baffle performs much better than that of S-downstream baffle for the enhanced y-velocity. 
 
4.6. Turbulent kinetic energy  

The contour plots of turbulent kinetic energy fields obtained under turbulent flow regime for both S-
baffle configurations with five various values of Reynolds number, Re = 12,000, 17,000, 22,000, 27,000, and 32,000 are presen
ted in Fig. 9 (a) to (e), respectively. The trends of turbulent kinetic energy are similar for both cases under investigation. 

 
 

(a) Re = 12,000 

(b) Re = 17,000 

(c) Re = 22,000 

(d) Re = 27,000 

(e) Re = 32,000 
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Fig. 7. Y-velocity fields for S-upstream and S-downstream cases as a function of Reynolds number. Y-velocity values in m/s. 

 
The plots show the largest value in the region opposite the right S-baffle and the smallest value in the region around the left 

S-baffle for both the S-upstream and S-downstream simulated. The turbulent kinetic energy augments with the augmentation of 
the Reynolds number (Re), and consequently, the Re = 32,000 provides the maximum turbulent kinetic energy in both cases 
studied. The use of S-upstream baffle shows better turbulent kinetic energy distribution values over the S-downstream baffle at 
almost stations. 

 

4.7. Turbulent viscosity  

The distributions of turbulent viscosity in the whole domain reported for two different S-baffle models (S-upstream and S-
downstream) at different Reynolds numbers, Re = 12,000, 17,000, 22,000, 27,000, and 32,000 are shown in Fig. 10 (a) to (e), 
respectively. Similar to the results in Fig. 9 (a) to (e), the largest variations in the turbulent viscosity are found in the regions 
opposite the lower wall-attached S-baffle, due to the high velocities in those regions. In addition, it is interesting to note that 
the value of the turbulent viscosity tends to augment with the rise of Reynolds number values for both models of the S-baffle. 
However, it is worth noting that for all Reynolds numbers employed, the model of S-upstream provides the highest turbulent 
viscosity value.  
 

4.8. Turbulent intensity  

The effect of changing S-baffle shape geometries on the flow structure in terms of turbulent intensity for the channel with 
S-upstream and/or S-downstream at different flow rate values, Re = 12,000, 17,000, 22,000, 27,000, and 32,000, is represented 
in Fig. 11 (a) to (e). In Fig. 11, the turbulent intensity tends to augment with the increase of the Reynolds number for the two 
cases simulated. The upper turbulent intensity values near the tip of the second S-baffle are due to the high velocities in that 
region. However, it is worth noting that for both S-baffle configurations investigated, the S-upstream configuration provides 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Re = 12,000 

(b) Re = 17,000 

(c) Re = 22,000 

(d) Re = 27,000 

(e) Re = 32,000 
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the highest turbulent intensity value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Dynamic pressure fields for S-upstream and S-downstream cases as a function of Reynolds number. Dynamic pressure values in Pa. 

  
4.9. Temperature field  

Figure 12 depicts the contour lines of temperature in the entire region under study for the cases of various S-baffle 
configurations treated. One can easily note in Fig. 12 that the temperature changes significantly over the hot walls of the 
channel for both S-baffle cases investigated. This suggests that the temperature field is considerably influenced by the 
recirculation flows as it can cause better mixing of the fluid in the area between the hot surfaces and the core flow regions. This 
should result in a high-temperature gradient over the hot surfaces. These observations are confirmed by Sripattanapipat and 
Promvonge [46]. The temperature field shown also indicates a temperature drop in the regions situated between the end of each 
S-baffle and the hot walls of the channel, with an acceleration process that begins just after the first and the second S-baffles. 
Therefore, there is an inverse proportionality between the increase in the flow velocity and the temperature of the fluid in each 
cross section of the channel. Moreover, based on the analysis of the numerical results of the velocity fields (see Fig. 4), as well 
as that of the temperature fields (see Fig. 12), for different S-baffle models used, a relation exists between the fluid temperature 
and the flow velocity. 
 
4.10. Normalized local and average Nusselt numbers  

The local Nusselt number (Nux) for cases S-upstream and S-downstream normalized by the Nusselt number (Nu0) of the 
case of smooth air channel with no baffle is shown in Fig. 13 as a function of the hot upper channel wall length at different 
Reynolds numbers of 12,000, 17,000, 22,000, 27,000, and 32,000. 

 
 

(a) Re = 12,000 

(b) Re = 17,000 

(c) Re = 22,000 

(d) Re = 27,000 

(e) Re = 32,000 
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Fig. 9. Turbulent kinetic energy fields for S-upstream and S-downstream cases as a function of Reynolds number. Dynamic pressure 
values in m2/s2. 

 
The local Nusselt number is minimal in the region around the first S-obstacle; it is maximal in the region opposite to the 

second S-obstacle, which is the case of the configuration under study. In the intermediate zone, significant values are found 
due to the recirculation of the fluid downstream of the first S-obstacle. The results obtained are in a good agreement with those 
of all the studies which assert that locally some recirculation zones appear and this corresponds to a greater transfer of heat (for 
example, see Nasiruddin and Kamran Siddiqui [47]). Upstream of the first S-obstacle, low values are found; this is due to the 
change in the direction of flow caused by this same obstacle towards the lower part of the channel with high velocities. The 
local Nusselt number is also affected by the Reynolds number. A linear increment exists between the local Nusselt number and 
the Reynolds number for both the S-baffle case treated. The figure also shows that the S-baffle model has a significant impact 
on the local the heat transfer rate. As expected, the Nux/Nu0 ratio obtained from the S-upstream baffle is substantially higher 
than that from the S-downstream one for all Reynolds number used.  

Figure 14 shows the variations of the normalized average Nusselt number (Nu/Nu0) with the flow rate in terms of the Re 
number at different cases for the channel with the S-shaped baffles. In the figure, the Nu/Nu0 rate tends to augment with the 
augmentation of the Re value from 12,000 to 32,000 for all S-models. The baffle in S-upstream case provides upper Nu/Nu0 
ratio than the one in S-downstream case around 25.011 %, 23.455 % 21.977 %, 20.626 %, and 19.414 % for Re=12,000, 
17,000, 22,000, 27,000, and 32,000, respectively. In both S-baffle cases, the baffled duct airflows give upper Nu values than 
that for smooth rectangular duct air flow due to the induction of high re-circulation in the baffled duct, leading to upper 
gradients of temperature. In the range under study, the normalized average Nusselt number is found around 1.939 - 4.582, 
depending on S-baffle orientations and Reynolds number. The value of Nu is around 2.586, 3.231, 3.759, 4.203, and 4.582 
times upper than the smooth rectangular duct in the absence of baffles and fins for Re = 12,000, 17,000, 22,000, 27,000, and 
32,000, respectively, for the case of S-upstream, while around 1.939, 2.473, 2.933, 3.336, and 3.692 times for the case of S-
downstream. 

(a) Re = 12,000  

(b) Re = 17,000  

(c) Re = 22,000  

(d) Re = 27,000  

(e) Re = 32,000  
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Fig. 10. Turbulent viscosity fields for S-upstream and S-downstream cases as a function of Reynolds number. Turbulent viscosity values 
in Kg/m-s. 

 
4.11. Normalized local and average friction coefficients  

By and large, the increase in heat transfer is not enhanced by the rise of the coefficient of skin friction, as this would lead to 
a larger pressure decline. Equation (14a) may be used to determine the distribution of the skin friction coefficient. Figure 15 
depicts the skin friction coefficient, Cf, along the upper channel wall for different Reynolds number values in the cases of 
different S-baffles, i.e., S-upstream and S-downstream. This same figure shows that the increase in the coefficients of skin 
friction is more significant than the one of the coefficients of heat transfer generated by the temperature field. This may suggest 
that the velocity and turbulence fields grow faster than the isotherms. Both S-configurations give the same trends of the skin 
friction coefficient (Cf). The smallest skin friction coefficient is found around the first S-baffle; the largest one is encountered 
in the region facing the second S-baffle, which represents the situation of the configuration under study. 

Note that at the starting out of the test section, the coefficient of skin friction decreases significantly because of the first S-
baffle that is placed in the top part of the channel. In this case, the air has the possibility to flow in the direction of the bottom 
surface, and as a result, the contact between air and the upper wall of the channel is negligible. Nevertheless, the skin friction 
coefficients are larger again at the positions corresponding to the flow recirculation areas, as displayed in the figure. The S-
baffles placed on the top and bottom walls cause the flow direction to change, and consequently, the largest values of the skin 
friction coefficient come out in the recirculation region after the second S-baffle. 
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Fig. 11. Turbulent intensity fields for S-upstream and S-downstream cases as a function of Reynolds number. Turbulent intensity values in 100 × %. 

 

   It is worth mentioning that an acceleration process begins right after the first and the second S-baffles. As the figure shows, 
the S-upstream performs greater skin friction coefficient than the S-downstream for all Re numbers applied. The comparison of 
the results in the same figure indicates that the S-baffle orientation has an impact on the friction loss. For the case B, the S-
baffle orientation is towards the downstream side, therefore, it causes less distortion of the flow, especially at lower values of 
Re number. Whereas, for the case A, the S-baffle orientation is towards the upstream side which causes significantly large flow 
distortion, where the effect of Re number is very significant. The Reynolds number also affects the skin friction coefficient. It 
is admitted that in both A and B cases, when the Reynolds number increases, the skin friction loss becomes more important.  

Figure 16 shows the variations of the normalized friction factor (f/f0) with the Reynolds number at various S-baffle 
orientations. In general, the f/f0 value augments with augmenting the Reynolds number. The friction loss of S-downstream 
baffle is lower than that of S-upstream baffles, which indicates that the S-downstream is more advantageous than the other. At 
Reynolds numbers of 12,000, 17,000, 22,000, 27,000, and 32,000, the S-downstream baffles seemed to decrease the f/f0 ratio 
by about 56.443 %, 55.700 %, 54.972 %, 54.289 %, and 53.660 % relative to the S-upstream baffles, respectively. The 
augmentation in the friction factor (f) for the S-baffles with both orientations is much higher than that for the smooth 
rectangular air channel. The factor of friction is around 7.621 - 32.336 and 3.319 - 14.984 times above the smooth rectangular 
channel for the S-upstream and S-downstream, respectively. 
 
4.12. Thermal aerodynamic performances  

Figure 17 shows the evolution of the thermal enhancement factor (TEF), calculated by Equation (16), as a function of 
Reynolds number (Re = 12,000, 17,000, 22,000, 27,000, and 32,000) with a constant section of the channel for the lower 
surface of the hot upper wall of the channel. As expected, the thermal enhancement factor increases with the increase in the 
Reynolds number in both studied cases (S-upstream and S-downstream). 

 

(a) Re = 12,000 

(b) Re = 17,000 

(c) Re = 22,000 

(d) Re = 27,000 

(e) Re = 32,000 
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Fig. 12. Temperature fields for S-upstream and S-downstream cases as a function of Reynolds number. Temperature values in K. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Variation of normalized local Nusselt number along upper 
channel wall for various S-baffles and Reynolds numbers. 

Fig. 14. Variation of normalized average Nusselt number with 
Reynolds number for various S-baffles. 

 
   The TEF values range from 1.326 in the case of S-upstream baffle for the lowest value of the Reynolds number (12,000) 
to 1.513 in the case of S-downstream for the maximum value of the Reynolds number (32,000). It is observed that the TEFs 
for the S-downstream baffle generally are found to be above the unity and to be much higher than those for employing the S-
upstream baffle at similar flow conditions. This indicates that the use of the S-downstream baffle leads to the advantage over 
that of the S-upstream ones. 
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(e) Re = 32,000 
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Fig. 15. Variation of normalized local friction coefficient along 

upper channel wall for various S-baffles and Reynolds numbers. 

 
Fig. 16. Variation of normalized average friction coefficient with 

Reynolds number for various S-baffles. 
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Fig. 17. Performance evaluation for both S-upstream and S-downstream baffles. 

5. Conclusion  

   Through this simulation, an analysis was conducted to examine the thermal and aerodynamic fields of air inside a 2D 
horizontal rectangular section channel. Two transverse, staggered, S-shaped, solid-type baffles were inserted into the channel in 
order to develop vortices to improve the mixing, and consequently, the heat transfer. The steady-state turbulent flow equations 
were solved using the finite volume method. In particular, the contour plots of streamlines, the fields of velocity and 
temperature, the profiles of axial velocity, the normalized local and average coefficients of the skin friction, the normalized 
local and average numbers of Nusselt, and the factor of thermal enhancement were obtained and investigated numerically. The 
present numerical results in terms of the axial velocity and dynamic pressure profiles were compared with the experimental 
ones found in the literature. This comparison indicated that a qualitative agreement and a very good concordance exist between 
the two results. The results obtained in the present smooth rectangular channel agreed pretty well within the range of ± 3.5 % 
in comparison with Dittus-Boelter correlation (1930) for the Nu0 and ± 1.15% in comparison with Petukhov correlation (1970) 
for f0. Important deformations and large recirculation regions were observed in the flow field. Typically, the intensity of the 
vortices depended heavily on the functioning parameters of the S-model under consideration. It was widely admitted that their 
lengths are directly proportional to the Reynolds number. The present flow structure had significant influences on the 
temperature field distributions in the entire domain under investigation. The hottest regions were generally located in the 
neighborhood of the heated top surface and the tips of the S-baffle. The largest value of the axial variations of the Nusselt 
number and the skin friction coefficient was found in the region facing the second S-baffle, while the smallest value was in the 
region near the first S-baffle. The channel containing the S-obstacles with a large Reynolds number gave higher heat transfer, 
friction loss, and thermal enhancement factor than the one with a smaller Reynolds number. For using the S-baffles, it was 
observed that the TEFs for the S-downstream baffle generally are found to be above the unity and to be much higher than those 
for employing the S-upstream baffle at similar flow conditions. This indicated that the use of the S-downstream baffle leads to 
the advantage over that of the S-upstream ones. This simulation can be applied in improving the thermal efficiency of heat 
exchangers as well as solar air baffled channel collectors and electronic packages. 
   Finally, based on the present CFD analysis, several future developments are to be considered and the following research 
perspectives should be recommended: 
  (i) Further studies are recommended to determine the best position of the ꞌSꞌ-shaped baffle on the surfaces of the channel. 
The best geometry parameters of the channel, such as the size, width, thickness, inclination, etc, must be determined. 
  (ii) New heat exchange surfaces should be considered by introducing perforated ꞌSꞌ-shaped baffles. It is also advocated to 
deepen this study in order to determine the effects of several parameters, such as the porous medium permeability, the number 
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and the dimensions of pores, the Darcy number, and the thermal conductivity on thermal heat and fluid flow.  
  (iii) The rest of this research work could also be oriented towards three-dimensional modeling and simulation studies of the 
entire plane air solar collector. 
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