489 research outputs found

    Nectar and flower production in Vicia faba L. (field bean) at ambient and elevated carbon dioxide

    Get PDF
    Atmospheric CO2 has been predicted to double by the year 2100. Elevated CO2 causes an increase in photosynthetic rate and extra assimilate is allocated to plant growth, seed and fruit production. Increased investment in flowers may have implications for pollination in entomophilous plants. Floral nectar standing crop, flower production and longevity were examined in Vicia faba, field bean, at ambient and elevated CO2. Nectar standing crop did not differ significantly between treatments but plants grown at elevated CO2 produced approximately 25% more flowers per plant and these lived 17% longer than those grown at ambient CO2. A plant grown at elevated CO2 may thus produce more nectar in total and, together with its increased floral display, may be more attractive to pollinators, but pollen flow will not necessarily be improved

    Independent responses to ultraviolet radiation and herbivore attack in broccoli

    Get PDF
    The plant responses to ultraviolet-B radiation (UV-B) and to insect herbivory are believed to be partially similar. In this study, responses to these factors were investigated in the crop species broccoli (Brassica oleracea L. convar. botrytis, Brassicaceae). Plants were first grown under three UV-B regimes (80%, 23%, and 4% transmittance of ambient UV-B) in greenhouses covered with either innovative materials (high and medium transmittance) or conventional glass (low transmittance). Half of the plants then remained under these conditions, but the other half were transferred to the field with ambient light and herbivore access for up to 3 d. The plant responses to distinct environmental conditions were examined by analysing the morphological and chemical parameters of plants kept inside and plants exposed in the field. Furthermore, suitability of field-exposed plants to naturally occurring insects was investigated in relation to UV-B pretreatment. High levels of UV-B radiation led to increased flavonoid concentrations, but to a lower biomass accumulation in broccoli. These patterns remained after outdoor exposure. However, UV-induced changes of plant traits did not alter attractiveness to herbivorous insects: thrips, whiteflies, and aphids attacked plants independently of UV-B pretreatment. A 3-fold increase of indolyl glucosinolate concentrations occurred in above-ground tissue of all the plants, most likely due to massive herbivore attack after 3 d of field exposure. The results show that plants respond with high specificity to different abiotic and biotic impacts, demonstrating the separate perception and processing of stress factors

    Oosorption in response to poor food: complexity in the trade-off between reproduction and survival

    Get PDF
    Plasticity in reproductive physiology is one avenue by which environmental signals, such as poor quality food, can be coordinated with adaptive responses. Insects have the ability to resorb oocytes that are not oviposited. Oosorption is proposed to be an adaptive mechanism to optimize fitness in hostile environments, recouping resources that might otherwise be lost, and reinvesting them into future reproductive potential. We tested the hypothesis that oosorption is an evolved mechanism by which females can reallocate resources from current reproductive effort to survival and future reproduction, when conditions for reproduction are poor, by examining the reproductive physiology and life-history outcome under poor quality food in populations of the milkweed bug (Oncopeltus fasciatus) that have adapted to live on sunflower seed. Females fed a diet of pumpkin seeds, known to be a poor host food, had higher levels of ovarian apoptosis (oosorption), lower reproductive output, but no reduction in life span under poor nutrition, as predicted under the oosorption hypothesis. However, the schedule of reproduction was surprising given the “wait to reproduce” assumption of oosorption as early fecundity was unaffected

    Multi-factor climate change effects on insect herbivore performance

    Get PDF
    <p>The impact of climate change on herbivorous insects can have far-reaching<br>consequences for ecosystem processes. However, experiments investigating the<br>combined effects of multiple climate change drivers on herbivorous insects are<br>scarce. We independently manipulated three climate change drivers (CO2,<br>warming, drought) in a Danish heathland ecosystem. The experiment was<br>established in 2005 as a full factorial split-plot with 6 blocks 9 2 levels of<br>CO2 9 2 levels of warming 9 2 levels of drought = 48 plots. In 2008, we<br>exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis<br>THOMSON), an important herbivore on heather, to ambient versus elevated<br>drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval<br>weight and survival were highest under ambient conditions and decreased<br>significantly with the number of climate change drivers. Weight was lowest<br>under the drought treatment, and there was a three-way interaction between<br>time, CO2, and drought. Survival was lowest when drought, warming, and elevated<br>CO2 were combined. Effects of climate change drivers depended on other<br>co-acting factors and were mediated by changes in plant secondary compounds,<br>nitrogen, and water content. Overall, drought was the most important factor<br>for this insect herbivore. Our study shows that weight and survival of insect<br>herbivores may decline under future climate. The complexity of insect herbivore<br>responses increases with the number of combined climate change drivers.</p

    Egg size-number trade-off and a decline in oviposition site choice quality: Female Pararge aegeria butterflies pay a cost of having males present at oviposition

    Get PDF
    Once mated, the optimal strategy for females of the monandrous butterfly, Pararge aegeria, is to avoid male contact and devote as much time as possible to ovipositing, as there is little advantage for females to engage in multiple matings. In other butterfly species the presence of males during egg laying has been shown to affect aspects of oviposition behavior and it has been suggested that repeated interference from males has the potential to reduce reproductive output. The aim of this study was to assess the effects of male presence during oviposition on reproductive output and behavior of a population of P. aegeria obtained from Madeira Island, Portugal, and maintained in the laboratory. Two experiments were performed where females were housed individually in small cages. Experiment 1 examined how social factors influenced the egg laying behavior of females. To do this the presence or absence of males was manipulated and egg size and number was measured over the first 14 days of oviposition. It was observed that when males were present during oviposition females made a trade-off between egg size and number. Experiment 2 examined how social factors affected oviposition site choice. Again, male presence/absence was manipulated, but in this experiment where the female laid her egg in relation to host quality was scored, and the size of the egg laid was measured. In the absence of males females selectively positioned their larger eggs on good quality host plants. However, selective oviposition was no longer observed when females were in the presence of males. We suggest that P. aegeria females from the Madeira Island population are adapted for a flexible oviposition strategy, governed by external cues, allowing a trade-off between egg size and number when the time available for egg laying is limiting

    Tropospheric O 3 moderates responses of temperate hardwood forests to elevated CO 2 : a synthesis of molecular to ecosystem results from the Aspen FACE project

    Full text link
    1.   The impacts of elevated atmospheric CO 2 and/or O 3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O 3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera , and the determinate, late successional, O 3 -tolerant species Sugar Maple, Acer saccharum ). 2.   The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O 3 -tolerant as well as O 3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34–36 nL L −1 during the summer daylight hours), O 3 offsets or moderates the responses induced by elevated CO 2 . 3.   After 3 years of exposure to 560 µmol mol −1 CO 2 , the above-ground volume of Aspen stands was 40% above those grown at ambient CO 2 , and there was no indication of a diminishing growth trend. In contrast, O 3 at 1·5 × ambient completely offset the growth enhancement by CO 2 , both for O 3 -sensitive and O 3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO 2 , and global models of forest productivity and climate change are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72125/1/j.1365-2435.2003.00733.x.pd

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd
    corecore