190 research outputs found

    Plasticity of Acetylcholine Receptor Gating Motions via Rate-Energy Relationships

    Get PDF
    AbstractLike other protein conformational changes, ion channel gating requires the protein to achieve a high-energy transition-state structure. It is not known whether ion channel gating takes place on a broad energy landscape on which many alternative transition state structures are accessible, or on a narrow energy landscape where only a few transition-state structures are possible. To address this question, we measured how rate-equilibrium free energy relationships (REFERs) for di-liganded and unliganded acetylcholine receptor gating vary as a function of the gating equilibrium constant. A large slope for the REFER plot indicates an openlike transition state, whereas a small slope indicates a closedlike transition state. Due to this relationship between REFERs and transition-state structure, the sensitivity of the REFER slope to mutation-induced energetic perturbations allows estimation of the breadth of the energy landscape underlying gating. The relatively large sensitivity of di-liganded REFER slopes to energetic perturbations suggests that the motions underlying di-liganded gating take place on a broad, shallow energy landscape where many alternative transition-state structures are accessible

    How to prioritize species recovery after a megafire

    Get PDF
    Due to climate change, megafires are increasingly common and have sudden, extensive impacts on many species over vast areas, leaving decision makers uncertain about how best to prioritize recovery. We devised a decision-support framework to prioritize conservation actions to improve species outcomes immediately after a megafire. Complementary locations are selected to extend recovery actions across all fire-affected species' habitats. We applied our method to areas burned in the 2019-2020 Australian megafires and assessed its conservation advantages by comparing our results with outcomes of a site-richness approach (i.e., identifying areas that cost-effectively recover the most species in any one location). We found that 290 threatened species were likely severely affected and will require immediate conservation action to prevent population declines and possible extirpation. We identified 179 subregions, mostly in southeastern Australia, that are key locations to extend actions that benefit multiple species. Cost savings were over AU$300 million to reduce 95% of threats across all species. Our complementarity-based prioritization also spread postfire management actions across a wider proportion of the study area compared with the site-richness method (43% vs. 37% of the landscape managed, respectively) and put more of each species' range under management (average 90% vs. 79% of every species' habitat managed). In addition to wildfire response, our framework can be used to prioritize conservation actions that will best mitigate threats affecting species following other extreme environmental events (e.g., floods and drought)

    Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study

    Get PDF
    Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV

    Exposure and confidence across critical airway procedures in pediatric emergency medicine: An international survey study

    Get PDF
    Background: Airway management procedures are critical for emergency medicine (EM) physicians, but rarely performed skills in pediatric patients. Worldwide experience with respect to frequency and confidence in performing airway management skills has not been previously described. Objectives: Our aims were 1) to determine the frequency with which emergency medicine physicians perform airway procedures including: bag-mask ventilation (BMV), endotracheal intubation (ETI), laryngeal mask airway (LMA) insertion, tracheostomy tube change (TTC), and surgical airways, and 2) to investigate predictors of procedural confidence regarding advanced airway management in children. Methods: A web-based survey of senior emergency physicians was distributed through the six research networks associated with Pediatric Emergency Research Network (PERN). Senior physician was defined as anyone working without direct supervision at any point in a 24-h cycle. Physicians were queried regarding their most recent clinical experience performing or supervising airway procedures, as well as with hands on practice time or procedural teaching. Reponses were dichotomized to within the last year, or ≥ 1 year. Confidence was assessed using a Likert scale for each procedure, with results for ETI and LMA stratified by age. Response levels were dichotomized to “not confident” or “confident.” Multivariate regression models were used to assess relevant associations. Results: 1602 of 2446 (65%) eligible clinicians at 96 PERN sites responded. In the previous year, 1297 (85%) physicians reported having performed bag-mask ventilation, 900 (59%) had performed intubation, 248 (17%) had placed a laryngeal mask airway, 348 (23%) had changed a tracheostomy tube, and 18 (1%) had performed a surgical airway. Of respondents, 13% of physicians reported the opportunity to supervise but not provide ETI, 5% for LMA and 5% for BMV. The percentage of physicians reporting “confidence” in performing each procedure was: BMV (95%) TTC (43%), and surgical airway (16%). Clinician confidence in ETT and LMA varied by patient age. Supervision of an airway procedure was the strongest predictor of procedural confidence across airway procedures. Conclusion: BMV and ETI were the most commonly performed pediatric airway procedures by emergency medicine physicians, and surgical airways are very infrequent. Supervising airway procedures may serve to maintain procedural confidence for physicians despite infrequent opportunities as the primary proceduralist

    Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data

    Get PDF
    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2 = 0.53–0.90, p < 10− 5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests that the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application

    Systematic review of beliefs, behaviours and influencing factors associated with disclosure of a mental health problem in the workplace

    Get PDF
    Stigma and discrimination present an important barrier to finding and keeping work for individuals with a mental health problem. This paper reviews evidence on: 1) employment-related disclosure beliefs and behaviours of people with a mental health problem; 2) factors associated with the disclosure of a mental health problem in the employment setting; 3) whether employers are less likely to hire applicants who disclose a mental health problem; and 4) factors influencing employers' hiring beliefs and behaviours towards job applicants with a mental health problem

    Search for New Heavy Particles Decaying to Z0 Z0 to llll, lljj in p pbar Collisions at Sqrt(s) = 1.96 TeV

    Get PDF
    We report on a search for anomalous production of Z boson pairs through a massive resonance decay in data corresponding to 2.5-2.9 fb^-1 of integrated luminosity in p pbar collisions at 1.96 TeV using the CDF II detector at the Fermilab Tevatron. This analysis, with more data and channels where the Z bosons decay to muons or jets, supersedes the 1.1 fb^-1 four-electron channel result previously published by CDF. In order to maintain high efficiency for muons, we use a new forward tracking algorithm and muon identification requirements optimized for these high signal-to-background channels. Predicting the dominant backgrounds in each channel entirely from sideband data samples, we observe four-body invariant mass spectra above 300 GeV/c^2 that are consistent with background. We set limits using the acceptance for a massive graviton resonance that are 7-20 times stronger than the previously published direct limits on resonant ZZ production.Comment: for submission to Phys. Rev.
    corecore