70 research outputs found

    A review of cytokine-based pathophysiology of Long COVID symptoms

    Get PDF
    The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS

    Heroic Helping: The Effects of Priming Superhero Images on Prosociality

    Get PDF
    Two experiments examined how exposure to superhero images influences both prosociality and meaning in life. In Experiment 1 (N = 246) exposed individuals to scenes with superhero images or neutral images. Individuals primed with superhero images reported greater helping intentions relative to the control group, which, in turn, were associated with increased meaning in life (indirect effect only; no direct effect). In Experiment 2 (N = 123), individuals exposed to a superhero poster helped an experimenter in a tedious task more than those exposed to a bicycle poster, though no differences were found for meaning in life. These results suggest that subtle activation of superhero stimuli increases prosocial intentions and behavior

    A review of cytokine-based pathophysiology of Long COVID symptoms

    Get PDF
    The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with “brain fog,” arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Effect of Comedications and Endotoxins on Mesenchymal Stem Cell Secretomes, Migratory and Immunomodulatory Capacity

    No full text
    Mesenchymal stem cells (MSCs) are becoming an increasingly popular therapeutic option among patients with a broad range of ailments to modulate immunity and induce regeneration. The majority of patients receiving these MSC therapies are on concurrent medication or have ongoing infection. In the present study, we examined the effect of immunosuppressive drugs and lipopolysaccharides (LPS)/endotoxins on the secretory profile, migration towards site of injury, and suppression of lymphocyte proliferation of bone marrow-derived MSCs (BMSCs). Generally, LPS coculture augmented the secretory capacity of BMSCs while exposure to immunosuppressive drugs resulted primarily in no change or attenuated secretion, with some cases of increased secretion, dependent on the cytokine assayed. Among the immunosuppressants evaluated, Hydrocortisone had the most widespread inhibitory effect, while LPS from E. coli O111:B4 had the most potent stimulatory effect. In addition, we also showed that Hydrocortisone or LPS from E. coli O111:B4 affected the migratory and immunosuppressive capacity of BMSCs. Following simulation with Hydrocortisone, BMSC migration was attenuated, and immunosuppressive capacity against T cell proliferation was enhanced, however, the opposite effects were seen with LPS from E. coli O111:B4. Our data suggests that the clinical outcomes of MSC-based therapy are affected by the use of immunosuppressive medication or the presence of endotoxemia in patients

    Effectiveness of quality incentive payments in general practice (EQuIP-GP): a study protocol for a cluster-randomised trial of an outcomes-based funding model in Australian general practice to improve patient care

    Get PDF
    Background There is international interest in whether improved primary care, in particular for patients with chronic or complex conditions, can lead to decreased use of health resources and whether financial incentives help achieve this goal. This trial (EQuIP-GP) will investigate whether a funding model based upon targeted, continuous quality incentive payments for Australian general practices increases relational continuity of care, and lessens health-service utilisation, for high-risk patients and children. Methods We will use a mixed methods approach incorporating a two-arm pragmatic cluster randomised control trial with nested qualitative case studies. We aim to recruit 36 general practices from Practice-Based Research Networks (PBRN) covering urban and regional areas of Australia, randomised into intervention and control groups. Control practices will provide usual care while intervention practices will be supported to implement a new service model incorporating incentives for relational continuity and timely access to appointments. Patients will comprise three groups: older (over 65 years); 18-65 years with chronic and/or complex conditions; and those aged less than 16 years with increased risk of hospitalisation. The funding model includes financial incentives to general practitioners (GPs) for providing longer consultations, same day access and timely follow-up after hospitalisation to enrolled patients. The payments are proportional to expected health system savings associated with improved quality of GP care. An outreach facilitator will work with practices to help incorporate the incentive model into usual work. The main outcome measure is relational continuity of care (Primary Care Assessment Tool short-form survey), with secondary outcomes including health-related quality of life and health service use (hospitalisations, emergency presentations, GP and specialist services in the community, medicine prescriptions and targeted pathology and imaging ordering). Outcomes will be initially evaluated over a period of 12 months, with ongoing data collection for 5 years. Discussion The trial will provide robust evidence on a novel approach to providing continuous incentives for improving quality of general practice care, which can be compared to block payment incentives awarded at target quality levels of pay-for-performance, both within Australia and also internationally
    corecore