631 research outputs found
Fast and precise map-making for massively multi-detector CMB experiments
Future cosmic microwave background (CMB) polarisation experiments aim to
measure an unprecedentedly small signal - the primordial gravity wave component
of the polarisation field B-mode. To achieve this, they will analyse huge
datasets, involving years worth of time-ordered data (TOD) from massively
multi-detector focal planes. This creates the need for fast and precise methods
to complement the M-L approach in analysis pipelines. In this paper, we
investigate fast map-making methods as applied to long duration, massively
multi-detector, ground-based experiments, in the context of the search for
B-modes. We focus on two alternative map-making approaches: destriping and TOD
filtering, comparing their performance on simulated multi-detector polarisation
data. We have written an optimised, parallel destriping code, the DEStriping
CARTographer DESCART, that is generalised for massive focal planes, including
the potential effect of cross-correlated TOD 1/f noise. We also determine the
scaling of computing time for destriping as applied to a simulated full-season
data-set for a realistic experiment. We find that destriping can out-perform
filtering in estimating both the large-scale E and B-mode angular power
spectra. In particular, filtering can produce significant spurious B-mode power
via EB mixing. Whilst this can be removed, it contributes to the variance of
B-mode bandpower estimates at scales near the primordial B-mode peak. For the
experimental configuration we simulate, this has an effect on the possible
detection significance for primordial B-modes. Destriping is a viable
alternative fast method to the full M-L approach that does not cause the
problems associated with filtering, and is flexible enough to fit into both M-L
and Monte-Carlo pseudo-Cl pipelines.Comment: 16 pages, 14 figures. MNRAS accepted. Typos corrected and computing
time/memory requirement orders-of-magnitude numbers in section 4 replaced by
precise number
Detection of X-ray galaxy clusters based on the Kolmogorov method
The detection of clusters of galaxies in large surveys plays an important
part in extragalactic astronomy, and particularly in cosmology, since cluster
counts can give strong constraints on cosmological parameters. X-ray imaging is
in particular a reliable means to discover new clusters, and large X-ray
surveys are now available. Considering XMM-Newton data for a sample of 40 Abell
clusters, we show that their analysis with a Kolmogorov distribution can
provide a distinctive signature for galaxy clusters. The Kolmogorov method is
sensitive to the correlations in the cluster X-ray properties and can therefore
be used for their identification, thus allowing to search reliably for clusters
in a simple way
Cellular dissection of malaria parasite invasion of human erythrocytes using viable Plasmodium knowlesi merozoites
Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species
Anthropometry for children's clothing: difficulties and limitations
Children's wear lacks an anthropometric study to better fit clothes on the body of the child, providing greater comfort for users. Initially, this thesis project in fashion design intended to measure Portuguese children between the ages of 2 to 10 years, enrolled in primary schools in the region of Minho in Portugal. During the data gathering, held in the months of June, July, October and November 2016, about 600 children were scanned and measured using a 3D body scanner. The purpose of this paper is to report the difficulties and limitations experienced during data collection of the anthropometric study and the adjustments that were needed, as well as discuss some of the data collected.This work is supported by FEDER funds through the Competitive Factors Operational Program (COMPETE) POCI-01-0145-FEDER-007136 and by national funds through Portuguese Foundation for Science and Technology (FCT), under the project UID/CTM/000264.info:eu-repo/semantics/publishedVersio
Apparel sizing using trimmed PAM and OWA operators
This paper is concerned with apparel sizing system design. One of the most important issues in the apparel development process is to define a sizing system that provides a good fit to the majority of the population. A sizing system classifies a specific population into homogeneous subgroups based on some key body dimensions. Standard sizing systems range linearly from very small to very large. However, anthropometric measures do not grow linearly with size, so they can not accommodate all body types. It is important to determine each class in the sizing system based on a real prototype that is as representative as possible of each class. In this paper we propose a methodology to develop an efficient apparel sizing system based on clustering techniques jointly with OWA operators. Our approach is a natural extension and improvement of the methodology proposed by McCulloch, Paal, and Ashdown (1998), and we apply it to the anthropometric database obtained from a anthropometric survey of the Spanish female population, performed during 2006.This paper has been partially supported by grants TIN2009-14392-C02-01, TIN2009-14392-C02-02, GV/2011/004 and P1.1A2009-02. We would like also to thank the Biomechanics Institute of Valencia for providing us the data set, and to the Spanish "Ministerio de Sanidad y Consumo" for having promoted and coordinated the "Anthropometric Study of the Female Population in Spain".Ibanez, M.; Vinue, G.; Alemany Mut, MS.; Simo, A.; Epifanio, I.; Domingo, J.; Ayala, G. (2012). Apparel sizing using trimmed PAM and OWA operators. Expert Systems with Applications. 39(12):10512-10520. https://doi.org/10.1016/j.eswa.2012.02.127S1051210520391
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy
clusters as obtained by Planck and by the ground-based interferometer, the
Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric
Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure
profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and
the scale radius (theta_500) of each cluster. Our resulting constraints in the
Y_500-theta_500 2D parameter space derived from the two instruments overlap
significantly for eight of the clusters, although, overall, there is a tendency
for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and
fainter than Planck. Significant discrepancies exist for the three remaining
clusters in the sample, namely A1413, A1914, and the newly-discovered Planck
cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the
Planck and AMI data is demonstrated through the use of detailed simulations,
which also discount confusion from residual point (radio) sources and from
diffuse astrophysical foregrounds as possible explanations for the
discrepancies found. For a subset of our cluster sample, we have investigated
the dependence of our results on the assumed pressure profile by repeating the
analysis adopting the best-fitting GNFW profile shape which best matches X-ray
observations. Adopting the best-fitting profile shape from the X-ray data does
not, in general, resolve the discrepancies found in this subset of five
clusters. Though based on a small sample, our results suggest that the adopted
GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
- âŠ