15 research outputs found

    Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    Get PDF
    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses

    The s-process weak component: uncertainties due to convective overshooting

    Full text link
    Using a new s-nucleosynthesis code, coupled with the stellar evolution code Star2003, we performed simulations to study the impact of the convection treatment on the s-process during core He-burning of a 25 Msun star (ZAMS mass) with an initial metallicity of Z=0.02. Particular attention was devoted to the impact of the extent of overshooting on the s-process efficiency. The results show enhancements of about a factor 2-3 in s-process efficiency (measured as the average overproduction factor of the 6 s-only nuclear species with 60A9060\lesssim A\lesssim 90) with overshooting parameter values in the range 0.01-0.035, compared to results obtained with the same model but without overshooting. The impact of these results on the p-process model based on type II supernovae is discussed.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Convective overshooting and production of s-nuclei in massive stars during their core He-burning phase

    Full text link
    With the "post-processing" technique we explore the role of the convective overshooting on the production of s-nuclei in stellar models of different initial mass and metallicity (15MZAMS/M2515 \leq M_{ZAMS}/M_{\odot} \leq 25; 104Z0.0210^{-4} \leq Z \leq 0.02), considering a range of values for the parameter ff, which determines the overall efficiency of convective overshooting.We find enhancements in the production of s-nuclei until a factor 6\sim 6 (measured as the average overproduction factor of the 6 s-only nuclear species with 60A9060\lesssim A\lesssim90) in all our models of different initial mass and metallicity with ff in the range 0.010.0350.01{-}0.035 (i.e. models with overshooting) compared to the production obtained with "no-overshooting" models (i.e. models with the same initial mass and metallicity, but f=105f=10^{-5}). Moreover the results indicate that the link between the overshooting parameter ff and the s-process efficiency is essentially monotonic in all our models of different initial mass and metallicity. Also evident is the higher s-process efficiency when we progressively increase for a given f value both the mass of the models from 15 M_\odot to 25 M_\odot and the Z value from 104^{-4} to 0.02. We also briefly discuss the possible consequences of these results for some open questions linked to the s-process weak component efficiency, as well as a "rule of thumb" to evaluate the impact of the convective overshooting on the yields of a generation of stars.Comment: 12 pages, 6 figures, A&A accepted (corrected typos plus minor changes in order to fulfill the guidelines for A&A manuscripts

    Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field

    Get PDF
    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high resolution (R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the potential inner disk clump stars exhibit abundance patterns more similar to those of the thin and thick disks. Comparisons between the abundance trends at different bulge locations suggest that the inner and outer bulge formed on similar timescales. However, we find evidence of some abundance differences between the most metal-poor and metal-rich stars in various bulge fields. The data also indicate that the halo may have had a more significant impact on the outer bulge initial composition than the inner bulge composition. The [Na/Fe] and to a lesser extent [La/Fe] abundances further indicate that the metal-poor bulge, at least at ~1 kpc from the Galactic center, and thick disk may not share an identical chemistry.Comment: Accepted for publication in ApJ; 66 pages, 17 figures, 3 tables; prior to publication, data tables in electronic form will be made available upon reques

    Protostellar collapse induced by compression. II: rotation and fragmentation

    Full text link
    We investigate numerically and semi-analytically the collapse of low-mass, rotating prestellar cores. Initially, the cores are in approximate equilibrium with low rotation (the initial ratio of thermal to gravitational energy is α00.5\alpha_0 \simeq 0.5, and the initial ratio of rotational to gravitational energy is β0=0.02to0.05\beta_0 = 0.02 {\rm to} 0.05). They are then subjected to a steady increase in external pressure. Fragmentation is promoted -- in the sense that more protostars are formed -- both by more rapid compression, and by higher rotation (larger β0\beta_0). In general, the large-scale collapse is non-homologous, and follows the pattern described in Paper I for non-rotating clouds, viz. a compression wave is driven into the cloud, thereby increasing the density and the inflow velocity. The effects of rotation become important at the centre, where the material with low angular momentum forms a central primary protostar (CPP), whilst the material with higher angular momentum forms an accretion disc around the CPP. More rapid compression drives a stronger compression wave and delivers material more rapidly into the outer parts of the disc.Comment: 17 pages, accepted for publication in MNRA

    The stellar mass spectrum from non-isothermal gravoturbulent fragmentation

    Full text link
    Identifying the processes that determine the initial mass function of stars (IMF) is a fundamental problem in star formation theory. One of the major uncertainties is the exact chemical state of the star forming gas and its influence on the dynamical evolution. Most simulations of star forming clusters use an isothermal equation of state (EOS). However, theoretical predictions and observations suggest that the effective polytropic exponent gamma in the EOS varies with density. We address these issues and study the effect of a piecewise polytropic EOS on the formation of stellar clusters in turbulent, self-gravitating molecular clouds using three-dimensional, smoothed particle hydrodynamics simulations. To approximate the results of published predictions of the thermal behavior of collapsing clouds, we increase the polytropic exponent gamma from 0.7 to 1.1 at some chosen density n_c, which we vary. The change of thermodynamic state at n_c selects a characteristic mass scale for fragmentation M_ch, which we relate to the peak of the observed IMF. Our investigation generally supports the idea that the distribution of stellar masses depends mainly on the thermodynamic state of the star-forming gas. The thermodynamic state of interstellar gas is a result of the balance between heating and cooling processes, which in turn are determined by fundamental atomic and molecular physics and by chemical abundances. Given the abundances, the derivation of a characteristic stellar mass can thus be based on universal quantities and constants.Comment: 13 pages, 7 figures, accepted by A&

    The effect of 12C + 12C rate uncertainties on the evolution and nucleosynthesis of massive stars

    Full text link
    [Shortened] The 12C + 12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. In order to investigate the effect of an enhanced carbon burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C + 12C reaction rates. Non-rotating stellar models were generated using the Geneva Stellar Evolution Code and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool. The enhanced rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon burning lifetime. An increased carbon burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core. Carbon shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon core s process. The yields were used to estimate the weak s-process component in order to compare with the solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s process. Consequently, it is shown that the production of isotopes in the Kr-Sr region can be used to constrain the 12C + 12C rate using the current branching ratio for a- and p-exit channels.Comment: The paper contains 17 figures and 7 tables. Table 7 will be published in full online onl

    The Effects of Element Diffusion on the Pulsational Properties of Variable DA White Dwarf Stars

    Get PDF
    We explore the effects of element diffusion due to gravitational settling and thermal and chemical diffusion on the pulsational properties of DA white dwarfs. To this end, we employ an updated evolutionary code coupled with a pulsational, finite difference code for computing the linear, non-radial g-modes in the adiabatic approximation. We follow the evolution of a 0.55 \msun white dwarf model in a self-consistent way with the evolution of chemical abundance distribution as given by time dependent diffusion processes. Results are compared with the standard treatment of diffusive equilibrium in the trace element approximation. Appreciable differences are found between the two employed treatments. We conclude that time dependent element diffusion plays an important role in determining the whole oscillation pattern and the temporal derivative of the periods in DAV white dwarfs. In addition, we discuss the plausibility of the standard description employed in accounting for diffusion in most of white dwarf asteroseismological studies.Comment: 6 pages, 5 figures, accepted for publication in MNRA

    The origin of the low-fluence component in the solar system

    No full text
    corecore