7 research outputs found

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at s=8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ'ℓ' (ℓ=μ, e), ℓℓqq-, ℓνqq- and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓqq-, ℓνqq-, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension

    Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

    Get PDF
    The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range |η| > 2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < |η| < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector

    No full text
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb(-1) of pp collision data at root s = 8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the l nu l'l' (l = mu, e), llq (q) over bar, l nu q (q) over bar and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the llq (q) over bar, l nu q (q) over bar, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension. (C) 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V

    Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    No full text
    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of highenergy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb(-1) of data collected by the ATLAS experiment and simulation of protonproton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of chargedparticle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, datadriven, method. The method uses the energy loss, dE/ dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, themeasured fraction that fail to be reconstructed is 0.061 +/- 0.006 (stat.) +/- 0.014 (syst.) and 0.093 +/- 0.017 (stat.) +/- 0.021 (syst.) for jet transverse momenta of 200-400GeV and 1400-1600GeV, respectively

    Measurement of the relative width difference of the B0B^0-Bˉ0\bar B^0 system with the ATLAS detector

    Get PDF
    20 pages plus author list + cover page (38 pages total), 5 figures, 2 tables, submitted to Journal of High Energy Physics, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2015-01/ - See paper for full list of authorsInternational audienceThis paper presents the measurement of the relative width difference ΔΓd/Γd\Delta \Gamma_d / \Gamma_d of the B0B^0-Bˉ0\bar B^0 system using the data collected by the ATLAS experiment at the LHC in ppp p collisions at s=7\sqrt{s} = 7 TeV and s=8\sqrt{s} = 8 TeV and corresponding to an integrated luminosity of 25.2 fb1^{-1}. The value of ΔΓd/Γd\Delta \Gamma_d / \Gamma_d is obtained by comparing the decay-time distributions of B0J/ψKSB^0 \to J/\psi K_S and B0J/ψK0(892)B^0 \to J/\psi K^{*0}(892) decays. The result is \Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1~\mbox{(stat.)} \pm 0.9~\mbox{(syst.)}) \times 10^{-2}. Currently, this is the most precise single measurement of ΔΓd/Γd\Delta \Gamma_d / \Gamma_d. It agrees with the Standard Model prediction and the measurements by other experiments

    Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector (vol 77, 580, 2017)

    Get PDF
    SCOAP
    corecore