9 research outputs found
Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.Peer reviewe
TRY plant trait database – enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
An intensive tree-ring experience: Connecting education and research during the 25th European Dendroecological Fieldweek (Asturias, Spain).
The European Dendroecologial Fieldweek (EDF) provides an intensive learning experience in tree-ring research that challenges any participant to explore new multidisciplinary dendro-sciences approaches within the context of field and laboratory settings. Here we present the 25th EDF, held in Asturias, NW Spain, in summer 2014. The course, with 33 participants and 10 instructors from 18 countries included advanced training in dendrochronology skills, an overview of tree-ring broad fields and methodological basics to deal with specific research questions as well as applied advanced micro-projects in dendroarchaeology (DAR), dendroclimatology (DCL), dendrogeomorphology (DGM), forest dynamic (FD) and plant anatomy (PA). The results demonstrated the potential of tree-ring research in the Asturias region. The DAR group researched archaeological samples from different contexts (Oviedo cathedral choir stalls, Segovia cathedral roof timbers, Ribadeo shipwreck ship timbers and Bronze Age site charcoal) and explored the supply of wood in different periods. The DCL group established that the Quercus robur and Castanea sativa ring-width measurements show weak climate-growth correlations, where for many trees this is likely caused by management. The strength of the climatic signal could be enhanced using undisturbed settings. The DGM group found that Corylus avellana and Salix spp. are challenging species for dendrogeomorphological studies. Debris-flow events were detected by the presence of tension wood, growth reduction and scars, and their incidences were also supported by local meteorological data. The FD group found that tree growth decreases with increasing competition, a pattern more pronounced in C. sativa than in Pinus sylvestris forest plantations. The results indicate that wood production could be increased by applying thinning treatments on C. sativa. The PA group showed that xylem conduits and phloem area are organized according to the common needs for water supply to leaves and obtain photosynthetic products, regardless site growing conditions for P. sylvestris and Tusilago farfara. In conclusion, this EDF has been a model for interdisciplinary research and international collaboration that has demonstrated that high-quality research and education can be conducted within one week. The EDFs provide an important service to the dendrochronological community and demonstrate the usefulness of this educational-scientific and multi-cultural experience
Early-warning signals of individual tree mortality based on annual radial growth
Altres ajuts: ICREA AcademiaTree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in interannual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms
A synthesis of radial growth patterns preceding tree mortality
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks
TRY plant trait database - enhanced coverage and open access
10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18