385 research outputs found

    Adaptive servo-ventilation for central sleep apnea in heart failure

    Get PDF
    Background Central sleep apnea is associated with poor prognosis and death in patients with heart failure. Adaptive servo-ventilation is a therapy that uses a noninvasive ventilator to treat central sleep apnea by delivering servo-controlled inspiratory pressure support on top of expiratory positive airway pressure. We investigated the effects of adaptive servo-ventilation in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea. Methods We randomly assigned 1325 patients with a left ventricular ejection fraction of 45% or less, an apnea–hypopnea index (AHI) of 15 or more events (occurrences of apnea or hypopnea) per hour, and a predominance of central events to receive guideline-based medical treatment with adaptive servo-ventilation or guideline-based medical treatment alone (control). The primary end point in the time-to-event analysis was the first event of death from any cause, lifesaving cardiovascular intervention (cardiac transplantation, implantation of a ventricular assist device, resuscitation after sudden cardiac arrest, or appropriate lifesaving shock), or unplanned hospitalization for worsening heart failure. Results In the adaptive servo-ventilation group, the mean AHI at 12 months was 6.6 events per hour. The incidence of the primary end point did not differ significantly between the adaptive servo-ventilation group and the control group (54.1% and 50.8%, respectively; hazard ratio, 1.13; 95% confidence interval [CI], 0.97 to 1.31; P=0.10). All-cause mortality and cardiovascular mortality were significantly higher in the adaptive servo-ventilation group than in the control group (hazard ratio for death from any cause, 1.28; 95% CI, 1.06 to 1.55; P=0.01; and hazard ratio for cardiovascular death, 1.34; 95% CI, 1.09 to 1.65; P=0.006). Conclusions Adaptive servo-ventilation had no significant effect on the primary end point in patients who had heart failure with reduced ejection fraction and predominantly central sleep apnea, but all-cause and cardiovascular mortality were both increased with this therapy. (Funded by ResMed and others; SERVE-HF ClinicalTrials.gov number, NCT00733343. opens in new tab.

    "GOLD or lower limit of normal definition? a comparison with expert-based diagnosis of chronic obstructive pulmonary disease in a prospective cohort-study"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Global initiative for chronic Obstructive Lung Disease (GOLD) defines COPD as a fixed post-bronchodilator ratio of forced expiratory volume in 1 second and forced vital capacity (FEV1/FVC) below 0.7. Age-dependent cut-off values below the lower fifth percentile (LLN) of this ratio derived from the general population have been proposed as an alternative. We wanted to assess the diagnostic accuracy and prognostic capability of the GOLD and LLN definition when compared to an expert-based diagnosis.</p> <p>Methods</p> <p>In a prospective cohort study, 405 patients aged ≥ 65 years with a general practitioner's diagnosis of COPD were recruited and followed up for 4.5 (median; quartiles 3.9; 5.1) years. Prevalence rates of COPD according to GOLD and three LLN definitions and diagnostic performance measurements were calculated. The reference standard was the diagnosis of COPD of an expert panel that used all available diagnostic information, including spirometry and bodyplethysmography.</p> <p>Results</p> <p>Compared to the expert panel diagnosis, 'GOLD-COPD' misclassified 69 (28%) patients, and the three LLNs misclassified 114 (46%), 96 (39%), and 98 (40%) patients, respectively. The GOLD classification led to more false positives, the LLNs to more false negative diagnoses. The main predictors beyond the FEV1/FVC ratio for an expert diagnosis of COPD were the FEV1 % predicted, and the residual volume/total lung capacity ratio (RV/TLC). Adding FEV1 and RV/TLC to GOLD or LLN improved the diagnostic accuracy, resulting in a significant reduction of up to 50% of the number of misdiagnoses. The expert diagnosis of COPD better predicts exacerbations, hospitalizations and mortality than GOLD or LLN.</p> <p>Conclusions</p> <p>GOLD criteria over-diagnose COPD, while LLN definitions under-diagnose COPD in elderly patients as compared to an expert panel diagnosis. Incorporating FEV1 and RV/TLC into the GOLD-COPD or LLN-based definition brings both definitions closer to expert panel diagnosis of COPD, and to daily clinical practice.</p

    LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer

    Get PDF
    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods

    Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5- 38.0°S): Constraints on Mantle Wedge and Input Compositions

    Get PDF
    Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5-38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile Trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like δ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6 and backarc = 5.0-5.4 per mil) and lack of correlation between δ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab

    Pattern of injury mortality by age-group in children aged 0–14 years in Scotland, 2002–2006, and its implications for prevention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of the epidemiology of injuries in children is essential for the planning, implementation and evaluation of preventive measures but recent epidemiological information on injuries in children both in general and by age-group in Scotland is scarce. This study examines the recent pattern of childhood mortality from injury by age-group in Scotland and considers its implications for prevention.</p> <p>Methods</p> <p>Routine mortality data for the period 2002–2006 were obtained from the General Register Office for Scotland and were analysed in terms of number of deaths, mean annual mortality rates per 100,000 population, leading causes of death, and causes of injury death. Mid-year population estimates were used as the denominator. Chi-square tests were used to determine statistical significance.</p> <p>Results</p> <p>186 children aged 0–14 died from an injury in Scotland during 2002–06 (MR 4.3 per 100,000). Injuries were the leading cause of death in 1–14, 5–9 and 10–14 year-olds (causing 25%, 29% and 32% of all deaths respectively). The leading individual causes of injury death (0–14 years) were pedestrian and non-pedestrian road-traffic injuries and assault/homicide but there was variation by age-group. Assault/homicide, fire and suffocation caused most injury deaths in young children; road-traffic injuries in older ones. Collectively, intentional injuries were a bigger threat to the lives of under-15s than any single cause of unintentional injury. The mortality rate from assault/homicide was highest in infants (<1 year) and decreased with increasing age. Children aged 5–9 were significantly less likely to die from an injury than 0–4 or 10–14 year-olds (p < 0.05). Suicide was an important cause of injury mortality in 10–14 year-olds.</p> <p>Conclusion</p> <p>Injuries continue to be a leading cause of death in childhood in Scotland. Variation in causes of injury death by age-group is important when targeting preventive efforts. In particular, the threats of assault/homicide in infants, fire in 1–4 year-olds, pedestrian injury in 5–14 year-olds, and suicide in 10–14 year-olds need urgent consideration for preventive action.</p

    Controls of faulting and reaction kinetics on serpentinization and double Benioff zones

    Get PDF
    The subduction of partially serpentinized oceanic mantle may potentially be the key geologic process leading to the regassing of Earth's mantle and also has important consequences for subduction zone processes such as element cycling, slab deformation, and intermediate-depth seismicity. However, little is known about the quantity of water that is retained in the slab during mantle serpentinization and the pattern of serpentinization that may occur during bending-related faulting; an initial state that is essential for quantifying subsequent dehydration processes. We present a 2-D reactive-flow model simulating hydration processes in the presence of faulting at the trench outer-rise. We find that the temperature dependence of the serpentinization rate in conjunction with outer-rise faulting results in plate age and speed dependent patterns of hydration. Serpentinization also results in a reduction in surface heat flux toward the trench caused by advective downflow of seawater into the reaction region. Observed heat flow reductions are larger than the reduction due to the minimum-water downflow needed for partial serpentinization, predicting that active hydrothermal vents and chemosynthetic communities should also be associated with bend-fault serpentinization. Our model results agree with previous studies that the lower plane of double Benioff zones can be generated due to dehydration of serpentinized mantle at depth. More importantly, the depth-dependent pattern of serpentinization including reaction kinetics predicts a separation between the two Benioff planes consistent with seismic observations

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al
    corecore