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Abstract We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at
streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential
equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches
it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching
infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided
into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third
temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low
order local polynomial to separate periodic and transient parts (including the noise contributions) of a
temperature-time series and calculates the frequency response of each subdomain to a known temperature
input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of
water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides
information regarding model quality. We tested the method on synthetic temperature data generated with
the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field
data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical
flow components could be identified and by making certain assumptions they could be quantified for each
subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable
addition to the existing 1-D methods.

1. Introduction

The quantification of water fluxes across streambeds has become an important aspect in the study of cou-
pled groundwater-surface water systems. Quantitative information regarding these fluxes is essential in the
study of the transport and fate of contaminants [Conant, 2004; Dujardin et al., 2014] and nutrients [Krause
et al., 2009; Bardini et al., 2013; Bartsch et al., 2014] in the hyporheic zone (HZ), i.e., the transition zone
between groundwater and surface water. Streambed fluxes also play an important role in river management
and restoration [Bukaveckas, 2007; Daniluk et al., 2013; K€aser et al., 2013]. Magnitude and direction of stream-
bed fluxes depend on a combination of (i) the pressure gradient between the stream and the connected
aquifer; (ii) streambed morphology and sediment properties; and (iii) sediment load and deposition pat-
terns. These issues have been reviewed by Buss et al. [2009] and Boano et al. [2014], and have been dis-
cussed in detail in many of the references therein.

Water fluxes across streambeds can be measured in the field using seepage meters [Rosenberry, 2008; Fritz
et al., 2009]. Fluxes can also be quantified using measurements of hydraulic heads and vertical hydraulic
gradients [Krause et al., 2012; Noorduijn et al., 2014] or by conducting tracer experiments [Engelhardt et al.,
2011; Langston et al., 2013]. An important tracer that has received increased attention over the recent years
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is heat. Temperature information has, for example, been used to map zones of groundwater-surface water
interaction [Alexander and Caissie, 2003], to quantify exchange fluxes for a variety of stream environments
[Bianchin et al., 2010; N€utzmann et al., 2014; Schmadel et al., 2014] or during extreme hydrologic events [Bar-
low and Coupe, 2009; Karan et al., 2014], and to investigate the influence of in-stream structures on hypo-
rheic heat transport [Hester et al., 2009; Menichino and Hester, 2014].

Temperature measurements conducted both at the top of a streambed and at some depth are often used
to quantify vertical streambed fluxes by numerically or analytically solving for coupled water flow and heat
transport as summarized by Anderson [2005] and Rau et al. [2014]. Several analytical 1-D models have been
developed that allow for the determination of purely vertical fluxes from temperature-time series [Hatch
et al., 2006; Keery et al., 2007; McCallum et al., 2012; Luce et al., 2013]. These models have now been integrat-
ed into software packages such as VFLUX [Gordon et al., 2012; Irvine et al., 2015a]. Common to all these ana-
lytical 1-D models is their use of information on amplitude attenuation and phase lag, which a temperature
signal at a certain frequency experiences as it propagates through the streambed. In most cases, streambed
thermal parameters, such as thermal diffusivity are known or estimated with low uncertainty. However, the
works of Luce et al. [2013] and McCallum et al. [2012] have also demonstrated the theoretical possibility to
estimate vertical fluxes without prior accurate knowledge of those streambed thermal parameters if both
amplitude attenuation and phase lag can be determined with sufficient accuracy.

In contrast to these analytical solutions, W€orman et al. [2012] demonstrated how vertical flux and thermal
diffusivity can be quantified in the frequency domain by applying spectral scaling factors. They also showed
that with such frequency domain approaches one can easily use temperature-information at multiple fre-
quencies (a frequency spectrum) simultaneously for flux calculations (this could be, e.g., the diel and annual
cycles, periodic temperature changes caused by anthropogenic influences, etc.), as compared to the
approaches implemented in VFLUX that use only information from one frequency at a time. With LPML,
Vandersteen et al. [2015] introduced another frequency domain method that can be used to quantify verti-
cal flux and thermal diffusivity. In addition, this LPML method is able to automatically separate a tempera-
ture signal into periodic, nonperiodic (transient), and noise parts, to calculate uncertainties on the
parameter estimates and to provide information regarding model quality. As such, these frequency domain
approaches seem to be more powerful and versatile and researchers have started to use them in combina-
tion with other time series data, e.g., on water quality in catchments [Riml and W€orman, 2015].

All these approaches determine flux and thermal diffusivity using pairs or arrays of vertically distributed
temperature sensors. As such, the temperature signal of the top sensor is considered the upper boundary
while the lower sensor(s) show(s) the response of the streambed in terms of temperature. The location of
the lower boundary condition is approaching infinity. This is based on the assumption that the subsurface
is a semi-infinite halfspace (see, e.g., equation (6a) in Luce et al. [2013]). In this way, the vertical flow compo-
nent and thermal parameters are assumed constant in space over the entire halfspace [see, e.g., also Keery
et al., 2007]. However, with the introduction of multisensor devices (i.e., containing more than two vertically
distributed temperature sensors at one measurement device) such as the one presented in Schmidt et al.
[2014] or FO-DTS, i.e., fiber-optic distributed temperature sensors) [Selker et al., 2006; Vogt et al., 2010],
researchers are now capable of collecting streambed temperature data with high vertical and temporal res-
olution. First attempts have been made to use such data and the aforementioned analytical solutions imple-
mented in the VFLUX software to calculate vertical profiles of streambed fluxes varying with depth [Briggs
et al., 2012, 2013]. For that, the upper boundary was shifted gradually downward. Although this approach
can provide reasonable flux estimates, using a solution based on a semi-infinite halfspace also introduces
additional errors [van Berkel et al., 2014b].

In reality, the temperature at a certain point within the streambed is determined by streambed forming pro-
cesses as well as the characteristics of water flow. Streambed-forming processes, such as erosion, colmation,
or sedimentation vary in time and space and many streambeds typically have a heterogeneous sediment
structure. Thus, magnitude and direction of water flux may vary considerably [e.g., Schornberg et al., 2010;
Vogt et al., 2010; Boano et al., 2014]. Water flow through the streambed is induced mostly by differences in
hydrostatic (due to a difference in elevation of the overlying water column) or hydrodynamic (bedform-
induced, flow around in-stream features) pressure heads. Other drivers of water flow could be turbulence in
the overlying water column, wave, or tidal effects (mostly in coastal streams or estuaries) or biological activi-
ties including plant growth, microbial activity, or the activity of benthic organisms (see the recent review
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paper of Boano et al. [2014 and refer-
ences therein]). These processes define
the mixing behavior of surface water
and groundwater in the HZ and as
such the nature of the flow field. Addi-
tionally, water could be stored in the
streambed in a way similar to aquifer
storage. However, due to the small vol-
ume streambeds or hyporheic zones
typically encompass, storage may not
play a significant role in most stream
environments.

With this in mind the question can be
raised regarding the validity or repre-
sentativeness of vertical flux estimates
in a three-dimensional flow field that
can change its characteristics much
faster in the HZ than in aquifers. Sev-
eral studies discuss nonvertical flow
components and their impact. For
example, Shanafield et al. [2010] state
that fully vertical flow can often only
be encountered beneath the stream
center, while closer to stream banks
and with increasing distance from the
streambed top, nonvertical flow com-
ponents increase. Lautz [2010], Roshan

et al. [2012], and Cranswick et al. [2014] used numerical models to study the performance of 1-D approaches
in comparison with 2-D approaches where vertical and nonvertical flow components are present and found
that assuming purely vertical flow can lead to considerable errors in flux estimates. In general, more work
seems necessary to improve our understanding regarding nonvertical flow in the HZ and their impact on the
validity of vertical flux estimates.

Here we introduce the LPMLE3 method (Figure 1) that puts forward the idea of quantifying the vertical flow
component and thermal diffusivity in the frequency domain using local boundary conditions. As such, the
use of the semi-infinite halfspace concept, which is prone to errors, can be avoided. Vertical flow compo-
nents can be quantified for finite streambed subdomains (or layers), which is more representative than
assuming the streambed as homogeneous. Results were used in additional analyses to delineate nonvertical
flow components. First, we present the mathematical theory behind the LPMLE3 method. Then, we test its
applicability on a synthetic data set. Afterward, we quantify vertical flow components for finite streambed
subdomains under field conditions using temperature data obtained from the Slootbeek, a small Belgian
lowland stream and delineate horizontal flow components. Finally, we show a possibility how the magni-
tude of these nonvertical flow components can be quantified when certain assumptions are made.

The LPMLE3 method uses a local polynomial (LP) model to separate periodic, nonperiodic (transient) and
noise components contained in a temperature signal and to determine the system response in the frequen-
cy domain. The LP part [Pintelon et al., 2010a] is combined with a maximum-likelihood estimator (MLE) to
quantify the vertical flow component or thermal diffusivity and their uncertainties for finite streambed sub-
domains considering for each subdomain information from three (3) temperature sensors. Each subdomain
has temperature boundary conditions (in form of temperature-time series) at its top and bottom, while the
vertical flow component is estimated from a third sensor located within this domain. By using finite
domains, vertical flow component and thermal parameters are considered locally constant over the entire
subdomain.

The LP method is used here to determine transfer functions describing the system behavior. As such, it is
similar to the one put forward in Vandersteen et al. [2015]. However, while Vandersteen et al. [2015] use the

Figure 1. Flow chart presenting the concept of the LPMLE3 method.
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transfer functions without transients, for LPMLE3 these transients are separated from the temperature
measurements and their variances are utilized. Other researchers have used a local polynomial method to
directly determine the Fourier transform of time series information [see Li et al., 2011, for a review]. An MLE3
without the LP part, which can only handle periodic input signals was introduced by van Berkel et al.
[2014a]. Moreover, van Berkel et al. [2014a] and this work distinguish themselves also from Vandersteen et al.
[2015] in that they consider noise on both the input and output temperature signals instead of only the out-
put, making noise calculations more elaborate.

2. The LPMLE3 Method

2.1. The Analytical Solution
Coupled vertical (1-D) water flow and heat transport in a streambed can be defined after Stallman [1965] as:

@T
@t

5D
@2T
@z2

2qz
qw cw

qc
@T
@z

(1)

with T [H] as the temperature depending on depth z [L] and time t [T]. The time-invariant parameters are
the Darcy flux (streambed flux) qz [L T21] along the z direction (here termed the vertical flow component),
the volumetric heat capacity of water qwcw [ML21 T22 H21] and the volumetric heat capacity of the water-
sediment matrix qc [ML21 T22 H21]. D [L2 T] in equation (1) is the effective thermal diffusivity that is calcu-
lated here as:

D5
j
qc

(2)

with j [ML T23 H21] as the effective thermal conductivity of the saturated medium. While the second term
of the right-hand side of equation (1) that includes the Darcy flux represents heat transport by convection
(the movement of water), the first term represents heat transport by conduction in water and through the
solid matrix. Several studies [see Rau et al., 2014, for an extensive review] discuss the inclusion of an addi-
tional thermal dispersivity function in equation (2) that describes thermal dispersion due to the spatially var-
iable water flow through the pores. However, this function will not be considered here as its impact on D
seems often negligible in advection dominated systems [Bons et al., 2013; Rau et al., 2014], especially for
fluxes smaller than around 10 m d21 [Rau et al., 2015].

The analytical solution to equation (1) for a semi-infinite halfspace is then given as:

Tðz; tÞ5T0ðz; tÞ1Ae2azcos ðxt2bzÞ (3)

with A as the magnitude of the temperature amplitude at the upper boundary, x as the angular frequency,
and T0(z, t) [H] as the temperature without influence from a sinusoidal input signal. Parameters a and b are
based on thermal characteristics of the streambed and the vertical flow component (see supporting infor-
mation). Equation (3) has been applied in some form or other by many researchers [e.g., Stallman, 1965;
Goto et al., 2005; Hatch et al., 2006; Keery et al., 2007; Luce et al., 2013] and assumes an upper boundary condi-
tion Tðz1; tÞ5T0ðz; tÞ1Acos ðxtÞ while the location of the lower boundary condition lim z!1Tðz2; tÞ5T0ðz; tÞ
is approaching infinity. As such, calculated vertical flow components or thermal parameters would be constant
over the entire semi-infinite halfspace.

Solving equation (1) analytically to obtain vertical flow components or thermal parameters that vary with
depth and are only constant between two temperature sensors is difficult. One possibility is to change the
lower boundary condition to the second sensor, which means that equation (3) now becomes

Tðz; tÞ5T0ðz; tÞ1Ae2azcos ðxt2bzÞ1Aeazcos ðxt1bzÞ (4)

In this case two eigenfunctions need to be solved, and in order to obtain qz and/or thermal parameters,
information from a third temperature sensor is needed with z1< z< z2, where z1 and z2 are the depths of
the boundary sensors.

A second possibility is to solve equation (1) in the frequency domain by applying the Fourier transform F

to obtain the (complex-valued) ordinary differential equation:
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d2H
dz2

1a
dH
dz

1ðixcÞH50 (5)

with H 5F {T}, and i5
ffiffiffiffiffiffiffi
21
p

, while a and c contain information on qz and thermal parameters as shown in
the supporting information. In case of periodic signals and without considering additional noise the analyti-
cal solution to equation (5) would then become

Hðz;x; hÞ5C1eðk1zÞ1C2eðk2zÞ (6)

with the parameter vector h 5 [a c], where

k1;25
1
2

2a6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a224ixc

p� �
(7)

C1 and C2 in equation (6) are determined using measured temperatures H(z 5 z1) and H(z 5 z2) from the
boundary sensors (see supporting information for further explanation).

2.2. The LP Part
To obtain h one can relate the predicted output H(z, x, h) from equation (6) to actual temperature measure-
ments Hmeas(z, x) by, e.g., using a MLE. However, as measured temperature signals often contain periodic
and nonperiodic parts (due to slow temperature fluctuations or instrument drift) and are perturbed with
noise, methods are needed that separate these parts from the measured input spectra before parameter
estimation can be performed (see supporting information).

One of these methods is the LP method [Pintelon et al., 2010a, 2010b; Vandersteen et al., 2015], which uses
the concept of transfer functions or frequency response functions (FRFs). These FRFs describe the system
for every frequency and depth. The LP method assumes that between sensors thermal transport is linear,
which follows directly from equation (1). Also, a noiseless reference temperature is assumed to exist, e.g.,
obtained from a temperature sensor at the streambed top. Between this reference temperature and any
temperature at a certain depth z a (nonparametric) transfer function can then be estimated.

Transients and other low-frequent disturbances result in smooth decaying functions in the (complex-plane)
frequency domain, unlike the temperature fluctuations such as the diel cycle and noise. As the smoothness
and order of these functions is unknown, they are locally approximated using only a number of discrete
spectral lines and a low order (local) polynomial. The order of the polynomial is determined by analyzing
the residuals (least square errors) resulting from fitting the polynomial function to the spectral lines used. If
the residuals become larger, the quality of the approximation decreases. In most cases, such as the exam-
ples discussed later on, a second order polynomial is sufficient.

2.3. The MLE3 Part
In the next step, the LPMLE3 method uses the obtained FRFs and the noise information on these FRFs as
input to a MLE to estimate the parameter vector ĥ5½â ĉ� (indicated by the accent above the symbols). The
general idea behind the MLE is to maximize a known likelihood function, in our case the probability density
function with respect to the measurements. ĥ is then determined by minimizing a log-likelihood cost func-
tion VML(h, xk) by means of nonlinear least squares optimization techniques as outlined in van Berkel et al.
[2014a] via

ĥ5min hVMLðh;xkÞ (8)

where xk are those frequencies determined by the LP method with a significant signal-to-noise ratio (see
supporting information) and

VMLðh;xkÞ5
1
F

XF

k51
jeMLðh;xkÞj2 (9)

where F is the number of spectral lines used in the estimation. The estimation error eML(h,xk) is calculated
as:
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eMLðh;xkÞ5
Hðz;xk ; hÞ2Hmeasðz;xkÞ

reðh;xkÞ
(10)

where re(h, xk) is the variability (in this case the standard deviation) that considers the different noises (see
supporting information).

To minimize the cost function, we used an analytical Jacobian matrix as put forward in van Berkel et al.
[2014a]. This Jacobian matrix can also be used to determine the covariance matrix COVðĥÞ of ĥ5½â ĉ�. The
MLE concept can then be applied to quantify q̂z and D̂ according to

q̂z5
â
ĉ

qc
qw cw

(11)

D̂52
1
ĉ

(12)

The uncertainties on q̂z and D̂ can be calculated with the covariance matrix COVðq̂z; D̂Þ via

COVðq̂z ; D̂Þ5Jh
h!h0

COVðĥÞJh!h0 (13)

where Jh!h0 is the Jacobian matrix

Jh!h05

1
ĉ

qc
qw cw

2
â

ĉ2

qc
qw cw

0
1

ĉ2

2
6664

3
7775 (14)

and Jh
h!h0 its Hermitian transpose. The estimated parameters q̂z and D̂ are only valid results for the respec-

tive streambed subdomain, for which temperature data has been used. Aspects regarding the optimal dis-
tance between sensors are discussed by van Berkel et al. [2014a]. They point out that parameter estimates
improve with increasing distance between upper and lower boundary, as the attenuation of the tempera-
ture signal is more pronounced (the signals still need to be significantly large to have a significant signal-to-
noise ratio). On the other hand, as the subdomain size increases, the assumption of constant flux and ther-
mal parameters may become increasingly problematic.

A helpful tool to detect model structure errors (i.e., to see whether the assumption of 1-D vertical water
flow and heat transport is adequate) is a cost function analysis. Such analysis describes the goodness of fit
between the actual model used and a theoretical one. In our case, a theoretical expected value VE of the
cost function based on the degrees of freedom can be compared to the actual value VML obtained from
equation (9). The expected cost function value, i.e., the degrees of freedom can be obtained as [van Berkel
et al., 2014a]

VE5 F2
n
2

� �
(15)

where n is the number of (unknown) free parameters (e.g., q̂z and D̂) and F again the number of spectral
lines, which fixes two degrees of freedom (real and complex or amplitude and phase). van Berkel et al.
[2014a] suggest that a model is acceptable if VML falls within a 95% confidence interval around VE. When
VML falls outside this range it might be useful to decrease the distance between upper and lower boundary.
However, smaller subdomains increase the uncertainty on the parameter estimates and hence a compro-
mise needs to be made.

3. Method Application and Verification

We implemented the LPMLE3 method in MATLAB 2011bVR (The MathWorks, Inc., Natick, MA, USA) and test-
ed its applicability using two data sets. First, we show by using a synthetic data set created with the numeri-
cal model STRIVE that the LPMLE3 method is able to extract known vertical flow components and thermal
diffusivities with little error. Afterwards, we calculate vertical flow components for a temperature-time series
obtained from the Slootbeek, a small stream in Belgium and show how this information could be used to
delineate nonvertical flow components.
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3.1. Verification Using Simulated Data
The LP and MLE3 parts were extensively tested by Pintelon et al. [2010a, 2010b] and van Berkel et al. [2014a],
respectively; Monte-Carlo analyses conducted by them showed that the uncertainties can be well predicted.
To investigate the performance of LPMLE3, we used a temperature distribution (i.e., a set of many time
series) with depth created with the 1-D finite difference model STRIVE [Anibas et al., 2009; Vandersteen et al.,
2015]. This model uses the numerical approach put forward by Lapham [1989] and can deduce vertical flow
by inverse modeling of temperature data. For this, it can be operated in steady state or transient mode as
described by Anibas et al. [2009].Water storage in the streambed is neglected. By assuming upwelling flow
conditions (qz 5 286.40 mm d21) and a thermal diffusivity of D 5 8.333 3 1027 m2 s21 as described in the
supplement, we used STRIVE to calculate a distribution of the temperature in the HZ with time assuming
strictly vertical flow. The upper boundary used was a measured temperature-time series obtained from the
Aa River, Belgium [Anibas et al., 2009], covering 520 days. The lower boundary was defined by the average
regional groundwater temperature of 12.28C at 5 m depth. The temperature distribution between upper
and lower boundary was calculated with STRIVE for every 0.01 m. For seven successive streambed subdo-
mains (0.1–0.2, 0.2–0.3, . . ., 0.7–0.8 m; with the third sensor always in the middle), STRIVE temperatures
were used as input to the LPMLE3 model to quantify vertical flow and thermal diffusivities. For that, two
cases were defined: (i) the LPMLE3 method was used with only a frequency of 1 d21 as is common in stud-
ies using amplitude/phase lag methods, and (ii) the LPMLE3 method was used with a frequency range from
1/520 to 1.5 d21. Frequencies larger than 1.5 d21 did not have a significant influence on estimates of the
vertical flow component. In general, the frequency range used in the LPMLE3 method can be chosen freely
by the user, whose choice will depend on the length and information content of the data set, as well as the
purpose of the investigation. The frequency range used can affect the outcome of the parameter estimation
as has been shown by Vandersteen et al. [2015] in section 3.5 and Figure 7.

For case (i), qz obtained with the LPMLE3 method deviated between 0.15% and 1.32% from the STRIVE value
of 286.40 mm d21 (Figure 2, supporting information Table S1), while estimated diffusivities differed
between 0.25% and 1.98% (supporting information Table S1). Although deviations are small, they increase
with depth and both parameters are slightly overestimated. This is a result from the attenuation of the daily
temperature signal with depth. Although this daily signal is by far the most pronounced one in the upper
streambed, lower frequencies increase their influence on qz estimates with increasing depth. For case (ii), an
increased parameter variation with depth could not be observed. Vertical flow components deviated
between 0.00% and 0.10% while estimated D deviated between 0.00% and 0.05% (supporting information
Table S2). Standard deviations on the parameter estimates increased with depth but for case (ii) they were
2–3 orders of magnitude smaller compared to case (i). The small differences of qz and D for case (ii) as com-
pared to the values obtained from the simulations with STRIVE can be a result from truncation of the tem-
perature data (after the third digit) during extraction from the STRIVE model. Additionally, numerical errors
produced by STRIVE when approximating the partial differential equation for heat transport on a grid could
have had an influence.

When performing a cost function analysis for case (ii), the expected value of the cost function was found to
be 779 (i.e., 520 days multiplied with the highest frequency used, which is 1.5 d21 in this case. The result is
subtracted by 1, i.e., the number of free parameters divided by two, see equation (15)). The actual model
cost (CostBest) values were between 22% and 438% higher than the expected cost value. For a field data
set one could assume that these differences are due to the influence of horizontal flow components that
would make the assumption of 1-D vertical flow increasingly less valid. However, for the synthetic data set
the temperature-time series output created with STRIVE is noiseless and the actual model cost is dominated
by numerical errors and not the noise contained in the temperature signal. By increasing the noise, actual
and expected cost values would differ less.

As a comparison, Figure 2 also shows estimates of qz obtained with the semi-infinite amplitude method of
Hatch et al. [2006] as implemented in VFLUX version 1.2.3 [Gordon et al., 2012]. From the deviations it can
be seen that using the amplitude method to calculate depth-dependent qz can lead to noticeable errors. In
our case qz estimates from VFLUX deviated between 1.15% and 11.27% (supporting information Table S3)
from 286.40 mm d21. Considering these results, we conclude that the LPMLE3 method is usable for the
quantification of vertical flow components and thermal diffusivities. Moreover, the results also show that
methods like LPMLE3 have advantages over amplitude/phase lag methods.
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3.2. Vertical and Nonvertical Flow
Components at the Slootbeek Field
Site
3.2.1. Field Site and Measurements
Temperature-time series were recorded
at location ML6 in the Slootbeek
(51812036.600N 4850014.900E), a small low-
land stream of around 4 km length in
North-Eastern Belgium (Figure 3) and
tributary to the Aa River. The Slootbeek
is fed by several drainage canals and its
stream stage is heavily influenced by its
location in an agricultural landscape
[Anibas et al., 2016]. The streambed is
composed predominantly of fine sand
and silt with varying content of organic
matter at the top and occasional gravel
deposits. The organic matter content
increases downstream. Average dis-
charge at the confluence with the Aa
River is about 0.05 m3 s21 [De Doncker,
2010] and average stream velocity dur-
ing installation of the measurement
equipment was about 0.2 m s21. ML6
was located about 120 m upstream of
the confluence with the Aa River and
equipped with a temperature probe
[Schmidt et al., 2014] containing a data
logger from UIT, Dresden, Germany

(Figure 4). The temperature probe is composed of a solid rod of polyoxymethylene. It has a total length of
0.66 m (Figure 4), an outer diameter of 0.02 m and holds eight TSIC-506 temperature sensors with variable sen-
sor spacing. The sensors are semiconducting resistors embedded in an integrated circuit. The accuracy of the
temperature sensors is 0.078C for a temperature range of 5–458C and their resolution is 0.048C. Thin stainless
steel flat blanks of 9 mm diameter are inserted into the plastic rod at the sensor locations to ensure optimal ther-
mal contact with the surrounding material. The temperature probe was calibrated in a water bath to allow for
corrections of sensor inaccuracies. The temperature probe simultaneously measured temperatures at the

Figure 2. Estimates of the vertical flow component versus depth obtained with
the LPMLE3 method and VFLUX version 1.2.3. The latter was used with the ampli-
tude method after Hatch et al. [2006]. LPMLE3 (i) results were calculated using only
a frequency of 1 d21. LPMLE3 (ii) results were obtained using a frequency range as
defined in the text. The uncertainty bounds 3r are shown for LPMLE3 (i) only. For
LPMLE3 (ii) they were too small to be visible on the figure. LPMLE3 (ii) reproduces
the original STRIVE value of 286.4 mm d21 (dotted black line) most accurately.
VFLUX results were obtained using a frequency of 1 d21. As VFLUX produces one
estimate per day, vertical flow components were averaged for each depth.

Figure 3. (a) The Slootbeek is a small tributary to the Aa River and part of the Nete River catchment in Northern Belgium. (b) Streambed temperatures were measured at location ML6 in
the Slootbeek at the outside of a stream bend.
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streambed top and at depths of 0.15, 0.17, 0.20, 0.25, 0.35, and 0.55 m over a period of 90 days (17 February to
17 May 2012) with an interval of 10 min. Further details about the field site, the measurement setup and addi-
tional measurements can be found in Anibas et al. [2016].

3.2.2. Estimating Vertical Flow
Components
The temperature data (Figure 5)
from location ML6 (Figure 3) were
used to estimate the vertical flow
components with the LPMLE3 meth-
od. Over the 90 day observation
period, temperatures ranged from
6.5 to 15.48C with an average of
10.48C and a standard deviation of
0.88C. The sensor at the streambed
top showed the highest tempera-
ture fluctuations due to the influ-
ence of the diel cycle while the
temperature signal was attenuated
with increasing distance from the
streambed top. From February until
Mid-March, temperature fluctuations

Figure 4. Estimates of the vertical flow component for ML6 based on temperature data collected with a temperature probe from UIT, Dres-
den, Germany [Schmidt et al., 2014] between 17 February and 17 May 2012. Data from sensor 1 were not used for our analyses. Sensor two
was located at the streambed top and the other sensors were placed within the streambed at known distances. Vertical flow components
(indicated by solid blue upward arrows) were estimated with the LPMLE3 method for all streambed subdomains, including nonoverlap-
ping subdomains SD1 and SD3 as well as SD2 and SD4 that are shown here. Estimates vary with depth and subdomain size. Differences in
vertical flow between subsequent subdomains (indicated by the blue arrows pointing to the right) indicate a change in the magnitude of
the nonvertical flow component. The direction of the nonvertical flow component cannot be delineated. All values are in mm d21

(see also Table 1).

Figure 5. Temperature data collected at location ML6 at the streambed top and
six depths.
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were much less pronounced than afterwards. For calculations of the vertical flow components the ther-
mal diffusivity was fixed to 4.375 3 1027 m2 s21, a value accounting for the organic matter content at
ML6 [Anibas et al., 2016]. This was done as independent field measurements of thermal parameters
were not available.

For the temperature probe shown in Figure 4 and assuming sensor 2 (at the streambed top) as the noiseless
reference sensor, vertical flow components can be estimated for 10 streambed subdomains (SD1 to SD10,
Table 1) using sensor triplets either with consecutive (e.g., 3-4-5) or nonconsecutive numbering (e.g., 3-4-6).
For each triplet the first and third sensors represent the upper, respectively lower boundary of the subdo-
main while the second sensor shows the system response. For these 10 subdomains, the vertical flow com-
ponent varied between 245 mm d21 for SD10 (sensors 5-6-8) and 2372 mm d21 for SD2, always indicating
upwelling conditions. For subdomains with estimates based on more than one possible sensor combination
(e.g., SD7), estimates significantly decreased in most cases (except for SD5 and SD10) with increasing depth
of the sensor showing the system response. In those cases, it might be appropriate to use average vertical
flow estimates for further analysis.

Percent standard deviations ranged from 1.6% for SD6 (sensors 3-5-7) to 16.6% for SD3. They were higher
for subdomains starting at or below sensor five. This is probably a result of the attenuation of the tempera-
ture signal with depth, which makes estimates of the vertical flow component in general more uncertain
using these heat tracing methods. In comparison, estimates obtained with the LPML method as described
by Vandersteen et al. [2015], who assume the entire subsurface to be a homogeneous semi-infinite halfspace
amount to 2312 mm d21 with an uncertainty on the estimate of 1.2 mm d21 or 0.4%. This value would be
most comparable to estimates for SD1, SD2, and SD5.

Figure 4 shows the temperature probe and estimates of the vertical flow components for subsequent sub-
domains SD1 and SD3 as well as SD2 and SD4. Whereas SD1 and SD2 show estimates for qz of 2315 and
2372 mm d21, respectively, estimates for SD3 and SD4 are much smaller with 247 and 249 mm d21,
respectively. Such a decrease in the vertical flow component with increasing distance from the streambed
top has already been described in previous studies [e.g., Roshan et al., 2012; Irvine et al., 2015b]. The esti-
mates of vertical flow can be used in further analyses (not contained in the LPMLE3 code) to delineate non-
vertical flow components.

Table 1. Estimates of Vertical Flow Components qz and Their Uncertainties for Different Streambed Subdomains Using Sensor-Triplets
With Consecutive and Nonconsecutive Numbering From the Temperature Probe Shown in Figure 4 at Location ML6a

Subdomain Sensors Size (m)
qz

(mm d21)
rqz

(mm d21) rqz (%) CostBest
qnv

(mm d21)
Range qnv

(mm d21)

SD1 3-4-5 0.05 2315 18.6 5.9 259 213 207–219
SD2 4-5-6 0.08 2372 12.0 3.2 265 156 142–170
SD3 5-6-7 0.15 247 7.8 16.6 215 481 454–507
SD4 6-7-8 0.3 249 4.2 8.5 126 479 442–516
SD5 3-4-6 2304 8.1 2.7 331 224 198–249

3-5-6 2340 6.8 2 317 188 158–217
SD6 3-4-7 0.2 2229 6.4 2.8 431 299 268–329

3-5-7 2218 3.5 1.6 588 310 270–349
3-6-7 2147 4.0 2.7 453 381 343–419

SD7 3-4-8 0.4 2168 5.4 3.2 517 360 326–393
3-5-8 2159 3.4 2.1 701 369 329–408
3-6-8 2105 3.2 3.1 422 423 383–463
3-7-8 281 2.7 3.3 165 447 405–489

SD8 4-5-7 0.18 2210 6.3 3 366 318 287–349
4-6-7 2126 4.2 3.4 343 402 365–439

SD9 4-5-8 0.38 2158 5.1 3.2 367 370 335–404
4-6-8 290 3.4 3.8 273 438 398–477
4-7-8 268 3.0 4.4 117 460 419–501

SD10 5-6-8 0.35 245 5.0 11.1 204 483 448–518
5-7-8 249 3.1 6.3 94 479 438–519

aBased on these qz estimates and making certain assumptions (see section 3.2.3), nonvertical flow components qnv were delineated
for each subsection. Size 5 size of streambed subdomain; qz 5 estimated vertical flow component; rqz 5 standard deviation of qz; Cost-
Best 5 actual value of cost function analysis, the expected value is 134; qnv 5 nonvertical flow component; Range qnv 5 range of the
nonvertical flow component if 63 3 rqz is added to qz.
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3.2.3. Nonvertical Flow Components
Vertical flow components presented in Table
1 show considerable variation for the differ-
ent streambed subdomains. However, their
expected magnitudes should be equal for all
subdomains if flow in the system was consid-
ered purely vertical and if conservation of
mass is to be ensured. We thus hypothesize
that these variations between subdomains
are mainly due to the existence of nonverti-
cal flow components. Such nonvertical flow
components have been found to increase
with increasing distance from the streambed
top [Roshan et al., 2012; Cranswick et al.,
2014] as well as increasing streambed het-
erogeneity [Irvine et al., 2015b]. Lautz [2010],
Roshan et al. [2012], and Cranswick et al.
[2014] showed in modeling studies that non-
vertical flow components can produce sub-
stantial errors in vertical flux estimates

obtained with 1-D methods if the vertical flow component is near zero. Irvine et al. [2015b] demonstrated
that variations in vertical flux estimates were large, when horizontal flow components were dominant as
compared to vertical components. Cuthbert and Mackay [2013] on the other hand showed that the exis-
tence of a nonvertical flow component alone does not necessarily produce erroneous vertical flux estimates.
Instead, they found increasing errors in estimates of the vertical flow component for strongly nonuniform
flow fields, where many converging/diverging flow lines exist due to the influence of shallow hyporheic
exchange flow.

By assuming conservation of mass, SD3 has a nonvertical flow component that is higher by 268 mm d21

than that of SD1 (based on the qz estimates discussed in section 3.2.2). Accordingly, SD4 has a nonvertical
flow component that is larger by 323 mm d21 than that of SD2. However, determining the magnitude of
the nonvertical flow component of each subdomain does not seem straight-forward as the distribution of
the vertical flow component with depth is generally not known. In case of ML6, all vertical flow components
are directed upwards (Table 1). We thus assumed that at depth z 5 0 only vertical flow occurs and used line-
ar regression on the qz estimates listed in Table 1 as shown in Figure 6. Values were assigned to the center
depth of each subdomain. With a Pearson correlation coefficient of r 5 0.84 the assumption of a linear
behavior seems adequate. However, a linear decrease of the vertical flow component with depth should by
no means be understood as generally valid and should be checked carefully. At distances farther away from
the streambed top or when the vertical flow vector frequently changes direction, linear regression will most
probably not prove useful.

For ML6, at z 5 0, the vertical flow estimate would then be 2528 mm d21 and nonvertical flow would be 0.
To allow for mass conservation, the overall flow must be constant and is then the sum of the vertical and
nonvertical flow components. As such we could deduce the magnitudes of the nonvertical flow component
qnv over each subdomain (Table 1). They vary between 156 mm d21 (SD2) and 483 mm d21 (SD10, sensors
5-6-8). By including the uncertainty on the qz estimates as 63 3 rqz (see Table 1), linear regression on the
lowest and highest qz estimates could be performed (supporting information Figures S1 and S2) and for
each subdomain, ranges of qnv could be deduced (Table 1). The smallest range was encountered for subdo-
main SD1, while the largest range was encountered for SD7 (sensors 3-7-8). The CostBest values shown in
Table 1 as a measure for model performance differ between 70% and 523% from the expected value of 134
and no trend is visible if compared to the magnitudes of the nonvertical flow component.
3.2.4. Other Factors Influencing Vertical Flow Estimates
Aside from the existence of nonvertical flow components or a nonuniform flow field, errors in vertical flow
estimates could arise from the quality of the temperature data. On the one hand, this quality is influenced
by sensor accuracy [Shanafield et al., 2011] and resolution [Soto-Lopez et al., 2011]. In our study, we reduced

Figure 6. To determine nonvertical flow components for subdomains of
ML6, we assumed that (i) the decrease of the vertical flow component
with depth close to the streambed top could be approximated linearly
and (ii) that at depth z 5 0 only vertical flow occurs. All qz estimates listed
in Table 1 were used in linear regression. They were assigned to the cen-
ter depth of each subdomain. With a Pearson correlation coefficient of
r 5 0.84 the assumption of a linear behavior seems adequate.
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the impact of measurement errors by
calibrating the multilevel temperature
stick in a water bath of known tem-
perature. Also, initial accuracy was
equal for all sensors. On the other
hand, the temperature signal is gener-
ally attenuated with increasing depth
and at deeper sensors often less infor-
mation can be used for parameter
estimation. The modeling process
itself could also add errors to the qz

estimates. For example, for a reason-
ably small subdomain, the boundary
temperature sensors, as well as mea-
surement and parameterization errors
could potentially have an influence on
the estimates. Further research is
needed to quantify these potential
error sources.
3.2.5. Estimating Time-Variant Flow
Components
To study the temporal variability of

vertical flow components, the LPMLE3 method was used on parts of the temperature-time series from loca-
tion ML6 by applying a moving window and the Short Time Fourier Transform. In general, the window
length can be selected freely depending on the used frequency information; however the same limitations
apply as to the LPML method [Pintelon et al., 2010a; Vandersteen et al., 2015]. The shorter the window, the
better the temporal resolution but also the noisier the output signal will be. At least two complete periods
of data (in our case 2 days) are needed to estimate the FRFs and the transient parts. When a frequency
range is used, the longer the window the smoother the vertical flow curves will appear as more small fre-
quencies (i.e., longer periods) can be included in the analysis. For illustration purposes, we applied a 30 day
rectangular moving window on subdomain SD4 (Figure 7) using frequencies of up to 1.5 d21 and assumed
a constant thermal diffusivity of 4.375 3 1027 m2 s21. The window was always moved by one day.

For SD4 (0.25–0.55 m depth), vertical flow components varied between 22 and 2157 mm d21, with stron-
ger fluctuations occurring during the first part of the time series. Percent standard deviations (r) ranged
from 6% to 2430%, with the highest uncertainties occurring near zero vertical flow. They are also larger at
the beginning of the qz-time series than after Mid-March. This coincides with a different temperature pat-
tern (Figure 5) showing less variation, which seemingly makes parameter estimation for the model more
challenging. Figure 7 also shows a time series of the nonvertical flow components assuming again that the
decrease of the vertical flow component with depth can be approximated linearly and regression analysis
can be performed. In fact, the Pearson correlation coefficient varied between 0.04 and 0.89, indicating that
not for all cases correlation can be assumed linear. The graph in Figure 7 shows thus only those qnv esti-
mates where the Pearson correlation coefficient was above 0.6 (84% of the cases). These nonvertical flow
components ranged from 346 to 559 mm d21.

4. Conclusions

The LPMLE3 method is a new approach to quantify vertical flow components in streambeds using
temperature-time series collected in streambed sediments. The LPMLE3 method solves the vertical 1-D par-
tial differential heat transport equation after Stallman [1965] in the frequency domain. Unlike other meth-
ods [e.g., Hatch et al., 2006; Keery et al., 2007; Luce et al., 2013; Vandersteen et al., 2015] that are based on the
assumption of a semi-infinite domain with the location of the lower boundary approaching infinity, the
LPMLE3 method uses a local lower boundary condition. As such, the streambed can be divided into finite
subdomains, that are bound above and below by temperature-time series, while temperature information
from a third sensor within the subdomain is used for parameter estimation. The advantage of this approach

Figure 7. Temporal variability of the vertical flow component qz (black dotted line)
and its uncertainty (3r; gray bands) for streambed subdomain SD4 after applying a
30 day window on the temperature-time series. The magnitude of the nonvertical
flow component qnv was obtained by performing linear regression (see Figure 6)
on qz estimates for each period. Only those nonvertical flow components are
shown, where the Pearson correlation coefficient r> 0.6.

Water Resources Research 10.1002/2015WR017453

SCHNEIDEWIND ET AL. LPMLE3 METHOD 6607



is that resulting vertical flow estimates and thermal parameters are only considered constant in the subdo-
main and not over the entire semi-infinite halfspace. The LPMLE3 method combines a local polynomial sys-
tems model and a MLE. The local polynomial model separates a temperature signal into periodic,
nonperiodic (transient), and noise parts and their variances. The MLE is used for parameter estimation and
via a covariance analysis uncertainties on the parameter estimates can be determined quickly. The pre-
sented results show that the LPMLE3 method can serve as a tool to estimate vertical flow components in
streambed subdomains when temperatures are measured at many depths simultaneously with a multilevel
temperature measurement device.

LPMLE3 provides information regarding the vertical water flow component within a certain finite subdo-
main. Differences in this vertical flow component between nonoverlapping subdomains might indicate a
larger or smaller contribution of nonvertical flow and identify zones where nonvertical flow dominates verti-
cal flow (e.g., SD4). A direct quantification of the nonvertical flow component of each subdomain, however,
is not trivial as the decrease of the vertical flow component with depth is not known. By conducting addi-
tional analyses and by making certain assumptions (linear decrease of the vertical flow component with dis-
tance from the streambed top, mass conservation) we could quantify the nonvertical flow components for
our field data. These assumptions will likely not hold true for all stream environments, e.g., where the tem-
perature probe cuts through more than one flow path as discussed by Briggs et al. [2012]. If one would be
interested in more robust estimates of these nonvertical flow components it might be worthwhile consider-
ing the use of 2-D or 3-D models or active heat sensors such as the one shown by Lewandowski et al. [2011]
and Angermann et al. [2012] or heated FO-DTS systems [Striegl and Loheide, 2012].

With this in mind, future studies could further elaborate on the importance of nonvertical flow components
in the hyporheic zone and their effect on flow and transport processes as well as groundwater-surface water
interaction. The general suitability of 1-D heat methods to quantify representative exchange fluxes might
also need further clarification. From a methodological point of view, the LPMLE3 method could be applied
on temperature data with variable spatial density to study limitations regarding subdomain size. For practi-
tioners interested in the temporal variability of vertical flow components, future studies could also investi-
gate the interplay between the size of the subdomain, temperature data quality and the windowing
technique applied. The use of the LPMLE3 method with temperature data from different environments
could further strengthen its potential applicability.
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