35 research outputs found

    Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process

    Functional characterization of a second porin isoform in Drosophila melanogaster. DmPorin2 forms voltage-independent cation-selective pores.

    Get PDF
    Mitochondrial porins or voltage-dependent anion-selective channels are channel-forming proteins mainly found in the mitochondrial outer membrane. Genome sequencing of the fruit fly Drosophila melanogaster revealed the presence of three additional porin-like genes. No functional information was available for the different gene products. In this work we have studied the function of the gene product closest to the known Porin gene (CG17137 coding for DmPorin2). Its coding sequence was expressed in Escherichia coli. The recombinant DmPorin2 protein is able to form channels similar to those formed by DmPorin1 reconstituted in artificial membranes. Furthermore, DmPorin2 is clearly voltage-independent and cation-selective, whereas its counterpart isoform 1 is voltage-dependent and anion-selective. Sequence comparison of the two porin isoforms indicates the exchange of four lysines in DmPorin1 for four glutamic acids in DmPorin2. We have mutated two of them (Glu-66 and Glu-163) to lysines to investigate their role in the functional features of the pore. The mutants E163K and E66K/E163K are endowed with an almost full inversion of the ion selectivity. Both single mutations partially restore the voltage dependence of the pore. We found that an additional effect with the double mutant E66K/E163K was the restoration of voltage dependence. Protein structure predictions highlight a 16 β-strand pattern, typical for porins. In a three-dimensional model of DmPorin2, Glu-66 and Glu-163 are close to the rim of the channel, on two opposite sides. DmPorin2 is expressed in all the fly tissues and in all the developmental stages tested. Our main conclusions are as follows. 1) The CG17137 gene may express a porin with a functional role in D. melanogaster. 2) We have identified two amino acids of major relevance for the voltage dependence of the porin pore

    Uncertainties in limits on TeV-gravity from neutrino-induced showers

    Full text link
    In models with TeV-scale gravity, ultrahigh energy cosmic rays can generate microscopic black holes in the collision with atmospheric and terrestrial nuclei. It has been proposed that stringent bounds on TeV-scale gravity can be obtained from the absence of neutrino cosmic ray showers mediated by black holes. However, uncertainties in the cross section of black hole formation and, most importantly, large uncertainties in the neutrino flux affects these bounds. As long as the cosmic neutrino flux remains unknown, the non-observation of neutrino induced showers implies less stringent limits than present collider limits.Comment: Changes to match published versio

    Impact of adenomyosis on the prognosis of patients with endometrial cancer

    Get PDF
    Background Despite the high prevalence of adenomyosis in hysterectomy specimens of endometrial carcinoma (EC) patients, the relationship between adenomyosis and EC prognosis appears unclear. Objective To assess the prognostic value of coexistent adenomyosis in patients with EC. Methods A systematic review and meta-analysis was performed by searching six electronic databases for studies reporting data on prognosis of EC patients with and without coexistent adenomyosis. Studies with patient selection based on prognostic factors were excluded. Pooled univariate hazard ratio (HR) analyses for overall survival (OS) and disease-free survival (DRF) were performed, using EC patients without adenomyosis as a control group. For DFS, pooled multivariate HR analysis was also evaluable. Results Three studies of 2505 EC patients (553 with and 1952 without adenomyosis) were included. Compared with EC patients without adenomyosis, EC patients with coexistent adenomyosis showed a pooled HR of 0.533 (CI 95%, 0.329-0.864) for OS at univariate analysis; 0.536 (CI 95%, 0.334-0.859) for DFS at univariate analysis; and 0.875 (CI 95%, 0.331-2.315) for DFS at multivariate analysis. Conclusion In EC patients with coexistent adenomyosis, the risk of death is halved compared with EC patients without adenomyosis. However, the independence of this association needs to be verified in future studies

    Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    none67si: Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.This work was supported by Telethon Grant GGP15171 to E.B. and R.D.G. and by a donation from Kobe city to the Department of General Pediatrics, Kobe University Graduate School of Medicine (K550003302). S.C. was supported by a Dutch Cancer Foundation grant (KWF11011). V.C. and A.M. were supported by the Italian Ministry of Health (“Ricerca Corrente” funding). R.D.G. is the recipient of grants from University of Ferrara (FAR and FIR funds).openBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, RobertoBonora, Elena; Chakrabarty, Sanjiban; Kellaris, Georgios; Tsutsumi, Makiko; Bianco, Francesca; Bergamini, Christian; Ullah, Farid; Isidori, Federica; Liparulo, Irene; Diquigiovanni, Chiara; Masin, Luca; Rizzardi, Nicola; Cratere, Mariapia Giuditta; Boschetti, Elisa; Papa, Valentina; Maresca, Alessandra; Cenacchi, Giovanna; Casadio, Rita; Martelli, Pierluigi; Matera, Ivana; Ceccherini, Isabella; Fato, Romana; Raiola, Giuseppe; Arrigo, Serena; Signa, Sara; Sementa, Angela Rita; Severino, Mariasavina; Striano, Pasquale; Fiorillo, Chiara; Goto, Tsuyoshi; Uchino, Shumpei; Oyazato, Yoshinobu; Nakamura, Hisayoshi; Mishra, Sushil K; Yeh, Yu-Sheng; Kato, Takema; Nozu, Kandai; Tanboon, Jantima; Morioka, Ichiro; Nishino, Ichizo; Toda, Tatsushi; Goto, Yu-Ichi; Ohtake, Akira; Kosaki, Kenjiro; Yamaguchi, Yoshiki; Nonaka, Ikuya; Iijima, Kazumoto; Mimaki, Masakazu; Kurahashi, Hiroki; Raams, Anja; MacInnes, Alyson; Alders, Mariel; Engelen, Marc; Linthorst, Gabor; de Koning, Tom; den Dunnen, Wilfred; Dijkstra, Gerard; van Spaendonck, Karin; van Gent, Dik C; Aronica, Eleonora M; Picco, Paolo; Carelli, Valerio; Seri, Marco; Katsanis, Nicholas; Duijkers, Floor A M; Taniguchi-Ikeda, Mariko; De Giorgio, Robert

    An expanded evaluation of protein function prediction methods shows an improvement in accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.Peer reviewe
    corecore