11 research outputs found
The AI gambit — leveraging artificial intelligence to combat climate change: opportunities, challenges, and recommendations
In this article we analyse the role that artificial intelligence (AI) could play, and is playing,
to combat global climate change. We identify two crucial opportunities that AI offers in
this domain: it can help improve and expand current understanding of climate change and
it contribute to combating the climate crisis effectively. However, the development of AI
also raises two sets of problems when considering climate change: the possible
exacerbation of social and ethical challenges already associated with AI, and the
contribution to climate change of the greenhouse gases emitted by training data and
computation-intensive AI systems. We assess the carbon footprint of AI research, and the
factors that influence AI’s greenhouse gas (GHG) emissions in this domain. We find that
the carbon footprint of AI research may be significant and highlight the need for more
evidence concerning the trade-off between the GHG emissions generated by AI research
and the energy and resource efficiency gains that AI can offer. In light of our analysis, we
argue that leveraging the opportunities offered by AI for global climate change whilst
limiting its risks is a gambit which requires responsive, evidence-based and effective
governance to become a winning strategy. We conclude by identifying the European
Union as being especially well-placed to play a leading role in this policy response and
provide 13 recommendations that are designed to identify and harness the opportunities
of AI for combating climate change, while reducing its impact on the environment
Artificial intelligence in support of the circular economy: ethical considerations and a path forward
The world’s current model for economic development is unsustainable. It encourages high levels of resource extraction, consumption, and waste that undermine positive environmental outcomes. Transitioning to a circular economy (CE) model of development has been proposed as a sustainable alternative. Artificial intelligence (AI) is a crucial enabler for CE. It can aid in designing robust and sustainable products, facilitate new circular business models, and support the broader infrastructures needed to scale circularity. However, to date, considerations of the ethical implications of using AI to achieve a transition to CE have been limited. This article addresses this gap. It outlines how AI is and can be used to transition towards CE, analyzes the ethical risks associated with using AI for this purpose, and supports some recommendations to policymakers and industry on how to minimise these risks
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Recommended from our members
Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice
Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed
Overview of the MOSAiC expedition: Snow and sea ice
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice-ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice
Overview of the MOSAiC expedition: Snow and sea ice
Year-round observations of the physical snow and ice properties and processes that govern the ice pack
evolution and its interaction with the atmosphere and the ocean were conducted during the
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the
research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was
embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice,
the ocean, the ecosystem, and biogeochemical processes.The overall aim of the snow and sea ice observations
during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the
central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical
properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested
spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice
observations of in situ and remote sensing properties of the different surface types over all seasons will help
to improve numerical process and climate models and to establish and validate novel satellite remote sensing
methods; the linkages to accompanying airborne measurements, satellite observations, and results of
numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal
regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered
in more detail (in observations, remote sensing, and models) to better understand snow-related feedback
processes.The ice pack revealed rapid transformations and motions along the drift in all seasons. The number
of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with
respect to the changing Arctic sea ice