72 research outputs found

    Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: a case study from Montserrat

    Get PDF
    Local stakeholders at the important but vulnerable Centre Hills on Montserrat consider that the continued presence of feral livestock (particularly goats and pigs) may lead to widespread replacement of the reserve’s native vegetation by invasive alien trees (Java plum and guava), and consequent negative impacts on native animal species. Since 2009, a hunting programme to control the feral livestock has been in operation. However long-term funding is not assured. Here, we estimate the effect of feral livestock control on ecosystem services provided by the forest to evaluate whether the biodiversity conservation rationale for continuation of the control programme is supported by an economic case. A new practical tool (Toolkit for Ecosystem Service Site-based Assessment) was employed to measure and compare ecosystem service provision between two states of the reserve (i.e. presence and absence of feral livestock control) to estimate the net consequences of the hunting programme on ecosystem services provided by the forest. Based on this we estimate that cessation of feral livestock management would substantially reduce the net benefits provided by the site, including a 46 % reduction in nature-based tourism (from 419,000to419,000 to 228,000) and 36 % reduction in harvested wild meat (from 205,000to205,000 to 132,000). The overall net benefit generated from annual ecosystem service flows associated with livestock control in thereserve, minus the management cost, was $214,000 per year. We conclude that continued feral livestock control is important for maintaining the current level of ecosystem services provided by the reserve

    A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes

    Get PDF
    Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization—using retrospective clinical spring measurements—was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young’s modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application

    Essential thrombocythemia

    Get PDF
    Essential thrombocythemia (ET) is an acquired myeloproliferative disorder (MPD) characterized by a sustained elevation of platelet number with a tendency for thrombosis and hemorrhage. The prevalence in the general population is approximately 30/100,000. The median age at diagnosis is 65 to 70 years, but the disease may occur at any age. The female to male ratio is about 2:1. The clinical picture is dominated by a predisposition to vascular occlusive events (involving the cerebrovascular, coronary and peripheral circulation) and hemorrhages. Some patients with ET are asymptomatic, others may experience vasomotor (headaches, visual disturbances, lightheadedness, atypical chest pain, distal paresthesias, erythromelalgia), thrombotic, or hemorrhagic disturbances. Arterial and venous thromboses, as well as platelet-mediated transient occlusions of the microcirculation and bleeding, represent the main risks for ET patients. Thromboses of large arteries represent a major cause of mortality associated with ET or can induce severe neurological, cardiac or peripheral artery manifestations. Acute leukemia or myelodysplasia represent only rare and frequently later-onset events. The molecular pathogenesis of ET, which leads to the overproduction of mature blood cells, is similar to that found in other clonal MPDs such as chronic myeloid leukemia, polycythemia vera and myelofibrosis with myeloid metaplasia of the spleen. Polycythemia vera, myelofibrosis with myeloid metaplasia of the spleen and ET are generally associated under the common denomination of Philadelphia (Ph)-negative MPDs. Despite the recent identification of the JAK2 V617F mutation in a subset of patients with Ph-negative MPDs, the detailed pathogenetic mechanism is still a matter of discussion. Therapeutic interventions in ET are limited to decisions concerning the introduction of anti-aggregation therapy and/or starting platelet cytoreduction. The therapeutic value of hydroxycarbamide and aspirin in high risk patients has been supported by controlled studies. Avoiding thromboreduction or opting for anagrelide to postpone the long-term side effects of hydrocarbamide in young or low risk patients represent alternative options. Life expectancy is almost normal and similar to that of a healthy population matched by age and sex

    From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing

    Get PDF
    Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed

    Modeling the interactions between river morphodynamics and riparian vegetation

    Get PDF
    The study of river-riparian vegetation interactions is an important and intriguing research field in geophysics. Vegetation is an active element of the ecological dynamics of a floodplain which interacts with the fluvial processes and affects the flow field, sediment transport, and the morphology of the river. In turn, the river provides water, sediments, nutrients, and seeds to the nearby riparian vegetation, depending on the hydrological, hydraulic, and geomorphological characteristic of the stream. In the past, the study of this complex theme was approached in two different ways. On the one hand, the subject was faced from a mainly qualitative point of view by ecologists and biogeographers. Riparian vegetation dynamics and its spatial patterns have been described and demonstrated in detail, and the key role of several fluvial processes has been shown, but no mathematical models have been proposed. On the other hand, the quantitative approach to fluvial processes, which is typical of engineers, has led to the development of several morphodynamic models. However, the biological aspect has usually been neglected, and vegetation has only been considered as a static element. In recent years, different scientific communities (ranging from ecologists to biogeographers and from geomorphologists to hydrologists and fluvial engineers) have begun to collaborate and have proposed both semiquantitative and quantitative models of river-vegetation interconnections. These models demonstrate the importance of linking fluvial morphodynamics and riparian vegetation dynamics to understand the key processes that regulate a riparian environment in order to foresee the impact of anthropogenic actions and to carefully manage and rehabilitate riparian areas. In the first part of this work, we review the main interactions between rivers and riparian vegetation, and their possible modeling. In the second part, we discuss the semiquantitative and quantitative models which have been proposed to date, considering both multi- and single-thread river

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore