173 research outputs found

    The Role of Group Coordinators.

    Get PDF
    Os trabalhos com grupos, instrumental valioso nos espaços institucionais, vêm sofrendo um processo de banalização de cunho tecnicista. Este artigo pretende ser uma contribuição à reflexão sobre a coordenação de grupos. Afasta-se dos estudos sobre a personalidade dos coordenadores, propondo seu entendimento como o de mediadores entre o nível vivencial e a com preensão crítica. Isso aponta seu caráter constitutivo nos processos grupais.The work with groups, a valuable tool in institutional spaces, is becoming more and more vulgarized because of a tendency toward a mere technical approach. This article is intended to be a contribution to group coordination. It keeps away from the study of the coordinators personality, suggesting that they be understood as mediators between experiencing and critical understanding. Thus pointing out their constructive role in group processes

    Using metabarcoding to reveal and quantify plant-pollinator interactions.

    Get PDF
    12 pagesInternational audienceGiven the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded. The study of pollen loads of insects captured in plant communities revealed that as compared to the observation of visits, metabarcoding revealed 2.5 times more plant species involved in plant-pollinator interactions. We further observed a tight positive relationship between the pollen-carrying capacities of insect taxa and the number of trnL and ITS1 sequences. The number of visits received per plant species also positively correlated to the number of their ITS1 and trnL sequences in insect pollen loads. By revealing interactions hard to observe otherwise, metabarcoding significantly enlarges the spatiotemporal observation window of pollination interactions. By providing new qualitative and quantitative information, metabarcoding holds great promise for investigating diverse facets of interactions and will provide a new perception of pollination networks as a whole

    Selection and gene flow shape genomic islands that control floral guides

    Get PDF
    Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation

    Empirical Evaluation of the Reliability of Photogrammetry Software in the Recovery of Three-Dimensional Footwear Impressions.

    Get PDF
    This paper examines the reliability of Structure from Motion (SfM) photogrammetry as a tool in the capture of forensic footwear marks. This is applicable to photogrammetry freeware DigTrace but is equally relevant to other SfM solutions. SfM simply requires a digital camera, a scale bar, and a selection of oblique photographs of the trace in question taken at the scene. The output is a digital three-dimensional point cloud of the surface and any plastic trace thereon. The first section of this paper examines the reliability of photogrammetry to capture the same data when repeatedly used on one impression, while the second part assesses the impact of varying cameras. Using cloud to cloud comparisons that measure the distance between two-point clouds, we assess the variability between models. The results highlight how little variability is evident and therefore speak to the accuracy and consistency of such techniques in the capture of three-dimensional traces. Using this method, 3D footwear impressions can, in many substrates, be collected with a repeatability of 97% with any variation between models less than ~0.5 mm

    Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    Get PDF
    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously

    Yield responses of wild C3 and C4 crop progenitors to sub-ambient CO2 : A test for the role of CO2 limitation in the origin of agriculture.

    Get PDF
    Limitation of plant productivity by the low partial pressure of atmospheric CO2 (Ca ) experienced during the last glacial period is hypothesised to have been an important constraint on the origins of agriculture. In support of this hypothesis, previous work has shown that glacial Ca limits vegetative growth in the wild progenitors of both C3 and C4 founder crops. Here we present data showing that glacial Ca also reduces grain yield in both crop types. We grew four wild progenitors of C3 (einkorn wheat and barley) and C4 crops (foxtail and broomcorn millets) at glacial and post-glacial Ca , measuring grain yield, and the morphological and physiological components contributing to these yield changes. The C3 species showed a significant increase in unthreshed grain yield of ~50% with the increase in Ca , which matched the stimulation of photosynthesis, suggesting that increases in photosynthesis are directly translated into yield at sub-ambient levels of Ca . Increased yield was controlled by a higher rate of tillering, leading to a larger number of tillers bearing fertile spikes, and increases in seed number and size. The C4 species showed smaller, but significant, increases in grain yield of 10-15%, arising from larger seed numbers and sizes. Photosynthesis was enhanced by Ca in only one C4 species and the effect diminished during development, suggesting that an indirect mechanism mediated by plant water relations could also be playing a role in the yield increase. Interestingly, the C4 species at glacial Ca showed some evidence that photosynthetic capacity was upregulated to enhance carbon capture. Development under glacial Ca also impacted negatively on the subsequent germination and viability of seeds. These results suggest that the grain production of both C3 and C4 crop progenitors was limited by the atmospheric conditions of the last glacial period, with important implications for the origins of agriculture. This article is protected by copyright. All rights reserved
    corecore