21 research outputs found

    Human adipose derived stem cells are superior to human osteoblasts (HOB) in bone tissue engineering on a collagen-fibroin-ELR blend

    Get PDF
    The ultrastructure of the bone provides a unique mechanical strength against compressive, torsional and tensional stresses. An elastin-like recombinamer (ELR) with a nucleation sequence for hydroxyapatite was incorporated into films prepared from a collagen – silk fibroin blend carrying microchannel patterns to stimulate anisotropic osteogenesis. SEM and fluorescence microscopy showed the alignment of adipose-derived stem cells (ADSCs) and the human osteoblasts (HOBs) on the ridges and in the grooves of microchannel patterned collagen-fibroin-ELR blend films. The Young's modulus and the ultimate tensile strength (UTS) of untreated films were 0.58 ± 0.13 MPa and 0.18 ± 0.05 MPa, respectively. After 28 days of cell culture, ADSC seeded film had a Young's modulus of 1.21 ± 0.42 MPa and UTS of 0.32 ± 0.15 MPa which were about 3 fold higher than HOB seeded films. The difference in Young's modulus was statistically significant (p: 0.02). ADSCs attached, proliferated and mineralized better than the HOBs. In the light of these results, ADSCs served as a better cell source than HOBs for bone tissue engineering of collagen-fibroin-ELR based constructs used in this study. We have thus shown the enhancement in the tensile mechanical properties of the bone tissue engineered scaffolds by using ADSCs

    Protein-based materials: from sources to innovative sustainable materials for biomedical applications

    No full text
    Proteins display an essential role in numerous natural systems due to their structural and biological properties. Given their unique properties, proteins have been thoroughly investigated in the last few decades, offering a myriad of solutions for the development of innovative biomaterials, including films, foams, composites and gels, in particular for biomedical applications such as drug delivery systems, biosensors and scaffolds for tissue regeneration. In this context, this review intends to give a general overview of the potential of protein based materials within the sustainable polymers context, covering aspects ranging from protein types, selection/isolation to properties of protein based (nano) materials and biomedical applications, passing through preparation methodologies of materials
    corecore