1,895 research outputs found

    Search for R-Parity Violating Supersymmetry at the CMS Experiment

    Full text link
    The latest results from CMS on R-Parity violating Supersymmetry based on the 19.5/fb full dataset from the 8 TeV LHC run of 2012 are reviewed. The results are interpreted in the context of simplified models with multilepton and b-quark jets signatures that have low missing transverse energy arising from light top-squark pair with R-parity-violating decays of the lightest supersymmetric particle. In addition to simplified model, a new approach for phenomenological MSSM interpretation is shown which demonstrates that the obtained results from multilepton final states are valid for a wide range of supersymmetry models.Comment: 6 pages, 10 figures, EPS-2013 July 17-24, Stockholm, Swede

    Prospects of New Physics searches using High Lumi - LHC

    Full text link
    After the observation of a Higgs boson near 125 GeV, the high energy physics community is investigating possible next steps for entering into a new era in particle physics. It is planned that the Large Hadron Collider will deliver an integrated luminosity of up to 3000/fb for the CMS and ATLAS experiments, requiring several upgrades for all detectors. The reach of various representative searches for supersymmetry and exotica physics with the upgraded detectors are discussed in this context, where a very high instantaneous luminosity will lead to a large number of pileup events in each bunch crossing. This note presents example benchmark studies for new physics prospects with the upgraded ATLAS and CMS detectors at a centre-of-mass energy of 14 TeV. Results are shown for an integrated luminosity of 300/fb and 3000/fb.Comment: Plenary talk presented at Next Steps in the Energy Frontier - Hadron Colliders Workshop, August 2014 - Fermi National Lab (FNAL). On behalf of the ATLAS and CMS Collaboration

    Simulation and Efficiency Studies of Optical Photon Transportation and Detection with Plastic Antineutrino Detector Modules

    Full text link
    In this work, the simulation of optical photons is carried out in an antineutrino detector module consisting of a plastic scintillator connected to light guides and photomultipliers on both ends, which is considered to be used for remote reactor monitoring in the field of nuclear safety. Using Monte Carlo (MC) based GEANT4 simulation, numerous parameters influencing the light collection and thereby the energy resolution of the antineutrino detector module are studied: e.g., degrees of scintillator surface roughness, reflector type, and its ap- plying method onto scintillator and light guide surface, the reflectivity of the reflector, light guide geometries and diameter of the photocathode. The impact of each parameter is inves- tigated by looking at the detected spectrum, i.e. the number photoelectrons per depositing energy. In addition, the average light collection efficiency of the detector module and its spatial variation are calculated for each simulation setup. According to the simulation re- sults, it is found that photocathode size, light guide shape, reflectivity of reflecting material and wrapping method show a significant impact on the light collection efficiency while scin- tillator surface polishing level and the choose of reflector type show relatively less impact. This study demonstrates that these parameters are very important in the design of plastic scintillator included antineutrino detectors to improve the energy resolution efficiency

    Comparison of Plastic Antineutrino Detector Designs in the Context of Near Field Reactor Monitoring

    Full text link
    We compare existing segmented plastic antineutrino detectors with our new geometrically improved design for antineutrino detection and light collection efficiency. The purpose of this study is to determine the most suitable design style for remote reactor monitoring in the context of nuclear safeguards. Using Monte Carlo based GEANT4 simulation package, we perform detector simulation based on two prominent experiments: Plastic antineutrino detector array (Panda) and Core monitoring by reactor antineutrino detector (Cormorad). In addition to these two well-known designs, another concept, the Panda2, can be obtained by making a small variation of Panda detector, is also considered in the simulation. The results show that the light collection efficiency of the Cormorad is substantially less with respect to the other two detectors while the highest antineutrino detection efficiency is achieved with the Cormorad and Panda2. Furthermore, as an alternative to these design choices, which are composed of an array of identical rectangular-shaped modules, we propose to combine regular hexagonal-shaped modules which minimizes the surface area of the whole detector and consequently reduces the number of optical readout channels considerably. With this approach, it is possible to obtain a detector configuration with a slightly higher detection efficiency with respect to the Panda design and a better energy resolution detector compared to the Cormorad design

    A reactor antineutrino detector based on hexagonal scintillator bars

    Full text link
    This study presents a new concept of segmented antineutrino detector based on hexagonal plastic scintillator bars for detecting antineutrinos from a nuclear reactor core. The choice of hexagonal scintillator bars is original and provides compactness. The proposed detector detects antineutrinos via inverse beta decay (IBD) with the prompt-delayed double coincidence. Owing to its segmented structure, the background, which satisfies the delayed coincidence condition can be eliminated by applying proper event selection cuts. In this manner, the main focus is to determine proper selection criteria to precisely tag the true IBD events. Monte-Carlo simulation is carried out to understand the characteristic of the IBD interaction in the proposed detector by using Geant4 toolkit. A set of event selection criteria is established based on the simulated data. It is found that a detection efficiency of 10 % can be achieved with the selection condition applied. It is also shown that fast neutrons, which constitute the main background source for above-ground detection, can be effectively eliminated with these selection criteria. The motivation for this study is to install this compact detector at a short distance (<100 m) from the Akkuyu Nuclear Power Plant, which is expected to start operation in 2023.Comment: 17 pages,13 figure

    Evolved model for early fault detection and health tracking in marine diesel engine by means of machine learning techniques

    Get PDF
    The Coast Guard Command, which has a wide range of duties as saving human lives, protecting natural resources, preventing marine pollution and battle against smuggling, uses diesel main engines in its ships, as in other military and commercial ships. It is critical that the main engines operate smoothly at all times so that they can respond quickly while performing their duties, thus enabling fast and early detection of faults and preventing failures that are costly or take longer to repair. The aim of this study is to create and to develop a model based on current data, to select machine learning algorithms and ensemble methods, to develop and explain the most appropriate model for fast and accurate detection of malfunctions that may occur in 4-stroke high-speed diesel engines. Thus, it is aimed to be an exemplary study for a data-based decision support mechanism

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore