1,786 research outputs found

    Observation of enhanced rate coefficients in the H2+_2^+ + H2_2 \rightarrow H3+_3^+ + H reaction at low collision energies

    Full text link
    The energy dependence of the rate coefficient of the H2+ +H2H3++H_2^+\ + {\rm H}_2 \rightarrow {\rm H}_3^+ + {\rm H} reaction has been measured in the range of collision energies between kB10k_\mathrm{B}\cdot 10 K and kB300k_\mathrm{B}\cdot 300 mK. A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below kB1k_\mathrm{B}\cdot 1 K, which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2_2 molecules in the j=1j = 1 rotational level, which make up 75% of the population of the neutral H2_2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure

    Surface Cracks Record Long-Term Seismic Segmentation of the Andean Margin

    Get PDF
    Understanding the long-term patterns of great earthquake rupture along a subduction zone provides a framework for assessing modern seismic hazard. However, evidence that can be used to infer the size and location of past earthquakes is typically erased by erosion after a few thousand years. Meter-scale cracks that cut the surface of coastal areas in northern Chile and southern Peru preserve a record of earthquakes spanning several hundred thousand years owing to the hyperarid climate of the region. These cracks have been observed to form during and/or shortly after strong subduction earthquakes, are preserved for long time periods throughout the Atacama Desert, demonstrate evidence for multiple episodes of reactivation, and show changes in orientation over spatial scales similar to the size of earthquake segments. Our observations and models show that crack orientations are consistent with dynamic and static stress fields generated by recent earthquakes. While localized structural and topographic processes influence some cracks, the strong preferred orientation over large regions indicates that cracks are primarily formed by plate boundary–scale stresses, namely repeated earthquakes. We invert the crack-based strain data for slip along the well-known Iquique seismic gap segment of the margin and find consistency with gravity anomaly–based inferences of long-term earthquake slip patterns, as well as the magnitude and location of the November 2007 Tocopilla earthquake. We suggest that the meter-scale cracks can be used to map characteristic earthquake rupture segments that persist over many seismic cycles, which encourages future study of cracks and other small-scale structures to better constrain the persistence of asperities in other arid, tectonically active regions

    Precise Measurement of Magnetic Field Gradients from Free Spin Precession Signals of 3^{3}He and 129^{129}Xe Magnetometers

    Full text link
    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3^3He and 129^{129}Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC_C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to beBz=(5.6±0.4)|\vec{\nabla}B_z|=(5.6 \pm 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale

    Orogen-parallel deformation of the Himalayan mid-crust: Insights from structural and magnetic fabric analyses of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal

    Get PDF
    The metamorphic core of the Himalaya (Greater Himalayan Sequence, GHS), in the Annapurna-Dhaulagiri region, central Nepal, recorded orogen-parallel stretching during midcrustal evolution. Anisotropy of magnetic susceptibility and field-based structural analyses suggest that midcrustal deformation of the amphibolite facies core of the GHS occurred under an oblate/suboblate strain regime with associated formation of low-angle northward dipping foliation. Magnetic and mineral stretching lineations lying within this foliation from the top of the GHS record right-lateral orogen-parallel stretching. We propose that oblate strain within a midcrustal flow accommodated oblique convergence between India and the arcuate orogenic front without the need for strain partitioning in the upper crust. Oblate flattening may have also promoted orogen-parallel melt migration and development of melt-depleted regions between km3 scale leucogranite culminations at ~50–100 km intervals along orogen strike. Following the cessation of flow, continued oblique convergence led to upper crustal strain partitioning between orogen-perpendicular convergence on thrust faults and orogen-parallel extension on normal and strike-slip faults. In the Annapurna-Dhaulagiri Himalaya, orogen-parallel stretching lineations are interpreted as a record of transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel stretching. Our findings suggest that midcrustal flow and upper crustal extension could not be maintained simultaneously and support other studies from across the Himalaya, which propose an orogen-wide transition from midcrustal orogen-perpendicular extrusion to upper crustal orogen-parallel extension during the mid-Miocene. The 3-D nature of oblate strain and orogen-parallel stretching cannot be replicated by 2-D numerical simulations of the Himalayan orogen

    The political identities of neighbourhood planning in England

    Get PDF
    The rise of neighbourhood planning has been characterised as another step in a remorseless de-politicisation of the public sphere. A policy initiated by the Coalition Government in England to create the conditions for local communities to support housing growth, neighbourhood planning appears to evidence a continuing retreat from political debate and contestation. Clear boundaries are established for the holistic integration of participatory democracy into the strategic plan-making of the local authority. These boundaries seek to take politics out of development decisions and exclude all issues of contention from discussion. They achieve this goal at the cost of arming participatory democracy with a collective identity around which new antagonisms may develop. Drawing on the post-political theories of Chantal Mouffe this paper identifies the return of antagonism and conflict to participation in spatial planning. Key to its argument is the concept of the boundary or frontier that in Mouffe’s theoretical framework institutionalises conflict between political entities. Drawing on primary research with neighbourhood development plans in England the paper explores how boundary conditions and boundary designations generate antagonism and necessitate political action. The paper charts the development of the collective identities that result from these boundary lines and argues for the potential for neighbourhood planning to restore political conflict to the politics of housing development

    Active megadetachment beneath the western United States

    Get PDF
    Geodetic data, interpreted in light of seismic imaging, seismicity, xenolith studies, and the late Quaternary geologic history of the northern Great Basin, suggest that a subcontinental-scale extensional detachment is localized near the Moho. To first order, seismic yielding in the upper crust at any given latitude in this region occurs via an M7 earthquake every 100 years. Here we develop the hypothesis that since 1996, the region has undergone a cycle of strain accumulation and release similar to “slow slip events” observed on subduction megathrusts, but yielding occurred on a subhorizontal surface 5–10 times larger in the slip direction, and at temperatures >800°C. Net slip was variable, ranging from 5 to 10 mm over most of the region. Strain energy with moment magnitude equivalent to an M7 earthquake was released along this “megadetachment,” primarily between 2000.0 and 2005.5. Slip initiated in late 1998 to mid-1999 in northeastern Nevada and is best expressed in late 2003 during a magma injection event at Moho depth beneath the Sierra Nevada, accompanied by more rapid eastward relative displacement across the entire region. The event ended in the east at 2004.0 and in the remainder of the network at about 2005.5. Strain energy thus appears to have been transmitted from the Cordilleran interior toward the plate boundary, from high gravitational potential to low, via yielding on the megadetachment. The size and kinematic function of the proposed structure, in light of various proxies for lithospheric thickness, imply that the subcrustal lithosphere beneath Nevada is a strong, thin plate, even though it resides in a high heat flow tectonic regime. A strong lowermost crust and upper mantle is consistent with patterns of postseismic relaxation in the southern Great Basin, deformation microstructures and low water content in dunite xenoliths in young lavas in central Nevada, and high-temperature microstructures in analog surface exposures of deformed lower crust. Large-scale decoupling between crust and upper mantle is consistent with the broad distribution of strain in the upper crust versus the more localized distribution in the subcrustal lithosphere, as inferred by such proxies as low P wave velocity and mafic magmatism

    Energy dependence of Cronin momentum in saturation model for p+Ap+A and A+AA+A collisions

    Full text link
    We calculate s\sqrt{s} dependence of Cronin momentum for p+Ap+A and A+AA+A collisions in saturation model. We show that this dependence is consistent with expectation from formula which was obtained using simple dimentional consideration. This can be used to test validity of saturation model (and distinguish among its variants) and measure xx dependence of saturation momentum from experimental data.Comment: LaTeX2e, 12 pages, 8 figure

    Study of Tau-pair Production in Photon-Photon Collisions at LEP and Limits on the Anomalous Electromagnetic Moments of the Tau Lepton

    Full text link
    Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.Comment: 20 pages, 9 figures, Accepted by Eur. Phys. J.

    Study of Leading Hadrons in Gluon and Quark Fragmentation

    Get PDF
    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo Simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (<~ 2 GeV/c^2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.Comment: 19 pages, 6 figures, Accepted by Phys. Lett.
    corecore