11 research outputs found

    Evaluation of alternative preservation treatments (water heat treatment, ultrasounds, thermosonication and UV-C radiation) to improve safety and quality of whole tomato

    Get PDF
    Previously optimised postharvest treatments were compared to conventional chlorinated water treatment in terms of their effects on the overall quality of tomato (‘Zinac’) during storage at 10 °C. The treatments in question were water heat treatment (WHT = 40 °C, 30 min), ultrasounds (US = 45 kHz, 80 %, 30 min), thermosonication (TS =40 °C, 30 min, 45 kHz, 80 %) and ultraviolet irradiation (UV-C: 0.97 kJ m−2). The quality factors evaluated were colour, texture, sensorial analysis, mass loss, antioxidant capacity, total phenolic content, peroxidase and pectin methylesterase enzymatic activities, and microbial load reduction. The results demonstrate that all treatments tested preserve tomato quality to some extent during storage at 10 °C. WHT, TS and UV-C proved to be more efficient on minimising colour and texture changes with the additional advantage of microbial load reduction, leading to a shelf life extension when compared to control trials. However, at the end of storage, with exception of WHT samples, the antioxidant activity and phenolic content of treated samples was lower than for control samples. Moreover, sensorial results were well correlated with instrumental colour experimental data. This study presents alternative postharvest technologies that improve tomato (Zinac) quality during shelf life period and minimise the negative impact of conventional chlorinated water on human safety, health and environment.info:eu-repo/semantics/publishedVersio

    The Real Time Remote Motion Control of Two Wheeled Mobile Balance Robot by Using Video Streaming

    No full text
    This study presents the motion control of a real time two wheeled balance robot capable of moving back and forward, turning right and left and video streaming via IP (Internet Protocol) camera on it. A C++ based visual user interface is created on PC (Personal Computer) in order to control of the designed Two Wheeled Mobile Balance Robot (TWMBR). By means of the interface, all controller parameters of the robot can be changed via wireless communication module on it. Moreover, the robot’s tilt angle with respect to time, linear displacement and controller output can be observed simultaneously. Within the robot control interface, the videos from IP camera is transferred into the operator screen via TCP/IP (Transmission Control Protocol/Internet Protocol) communication protocol. So, the robot can be controlled via arrow keys and visual interface on PC remotely by an operator. Acceleration and gyro sensors are fused by means of a real-time Kalman Filter so that robot can keep its balance in both moving and stable state in the designed system. Thus, an accurate tilt angle control is realized. Classic PID (Proportional-Integral-Derivative) algorithm is used as robot controller. In conclusion, via IP camera on the robot, the real-time motion control is performed and data diagrams about motion control are obtained

    The Real Time Remote Motion Control of Two Wheeled Mobile Balance Robot by Using Video Streaming

    No full text
    This study presents the motion control of a real time two wheeled balance robot capable of moving back and forward, turning right and left and video streaming via IP (Internet Protocol) camera on it. A C++ based visual user interface is created on PC (Personal Computer) in order to control of the designed Two Wheeled Mobile Balance Robot (TWMBR). By means of the interface, all controller parameters of the robot can be changed via wireless communication module on it. Moreover, the robot’s tilt angle with respect to time, linear displacement and controller output can be observed simultaneously. Within the robot control interface, the videos from IP camera is transferred into the operator screen via TCP/IP (Transmission Control Protocol/Internet Protocol) communication protocol. So, the robot can be controlled via arrow keys and visual interface on PC remotely by an operator. Acceleration and gyro sensors are fused by means of a real-time Kalman Filter so that robot can keep its balance in both moving and stable state in the designed system. Thus, an accurate tilt angle control is realized. Classic PID (Proportional-Integral-Derivative) algorithm is used as robot controller. In conclusion, via IP camera on the robot, the real-time motion control is performed and data diagrams about motion control are obtained

    Neuropathic Pain Frequency in Neurology Outpatients: A Multicenter Study

    No full text
    Introduction: Neuropathic pain is common, but the frequency of misdiagnosis and irrational treatment is high. The aim of this study is to evaluate the rate of neuropathic pain in neurology outpatient clinics by using valid and reliable scales and review the treatments of patients

    Parathyroid Disorders

    No full text
    corecore