175 research outputs found

    Excited state g-functions from the Truncated Conformal Space

    Get PDF
    In this paper we consider excited state g-functions, that is, overlaps between boundary states and excited states in boundary conformal field theory. We find a new method to calculate these overlaps numerically using a variation of the truncated conformal space approach. We apply this method to the Lee-Yang model for which the unique boundary perturbation is integrable and for which the TBA system describing the boundary overlaps is known. Using the truncated conformal space approach we obtain numerical results for the ground state and the first three excited states which are in excellent agreement with the TBA results. As a special case we can calculate the standard g-function which is the overlap with the ground state and find that our new method is considerably more accurate than the original method employed by Dorey et al.Comment: 21 pages, 6 figure

    Combined In Silico and In Vivo Analyses Reveal Role of Hes1 in Taste Cell Differentiation

    Get PDF
    The sense of taste is of critical importance to animal survival. Although studies of taste signal transduction mechanisms have provided detailed information regarding taste receptor calcium signaling molecules (TRCSMs, required for sweet/bitter/umami taste signal transduction), the ontogeny of taste cells is still largely unknown. We used a novel approach to investigate the molecular regulation of taste system development in mice by combining in silico and in vivo analyses. After discovering that TRCSMs colocalized within developing circumvallate papillae (CVP), we used computational analysis of the upstream regulatory regions of TRCSMs to investigate the possibility of a common regulatory network for TRCSM transcription. Based on this analysis, we identified Hes1 as a likely common regulatory factor, and examined its function in vivo. Expression profile analyses revealed that decreased expression of nuclear HES1 correlated with expression of type II taste cell markers. After stage E18, the CVP of Hes1−/− mutants displayed over 5-fold more TRCSM-immunoreactive cells than did the CVP of their wild-type littermates. Thus, according to our composite analyses, Hes1 is likely to play a role in orchestrating taste cell differentiation in developing taste buds

    Osmosensitivity of Transient Receptor Potential Vanilloid 1 Is Synergistically Enhanced by Distinct Activating Stimuli Such as Temperature and Protons

    Get PDF
    In animals, body-fluid osmolality is continuously monitored to keep it within a narrow range around a set point (∼300 mOsm/kg). Transient receptor potential vanilloid 1 (TRPV1), a cation channel, has been implicated in body-fluid homeostasis in vivo based on studies with the TRPV1-knockout mouse. However, the response of TRPV1 to hypertonic stimuli has not been demonstrated with heterologous expression systems so far, despite intense efforts by several groups. Thus, the molecular entity of the hypertonic sensor in vivo still remains controversial. Here we found that the full-length form of TRPV1 is sensitive to an osmotic increase exclusively at around body temperature using HEK293 cells stably expressing rat TRPV1. At an ambient temperature of 24°C, a slight increase in the intracellular calcium concentration ([Ca2+]i) was rarely observed in response to hypertonic stimuli. However, the magnitude of the osmosensitive response markedly increased with temperature, peaking at around 36°C. Importantly, the response at 36°C showed a robust increase over a hypertonic range, but a small decrease over a hypotonic range. A TRPV1 antagonist, capsazepine, and a nonspecific TRP channel inhibitor, ruthenium red, completely blocked the increase in [Ca2+]i. These results endorse the view that the full-length form of TRPV1 is able to function as a sensor of hypertonic stimuli in vivo. Furthermore, we found that protons and capsaicin likewise synergistically potentiated the response of TRPV1 to hypertonic stimuli. Of note, HgCl2, which blocks aquaporins and inhibits cell-volume changes, significantly reduced the osmosensitive response. Our findings thus indicate that TRPV1 integrates multiple different types of activating stimuli, and that TRPV1 is sensitive to hypertonic stimuli under physiologically relevant conditions

    Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species

    Get PDF
    Advanced oxidation processes (AOPs) have known increased application to treat wastewaters containing recalcitrant compounds that are hardly degraded by conventional technologies. AOPs are characterized by the formation of strong oxidants such as hydroxyl radicals, superoxide anions, hydroperoxyl radicals and singlet oxygen, which react with the contaminant, contributing to its degradation. This paper provides an overview of the determination methods of reactive oxygen species, ROS, in the application of AOPs; the methods developed in the available literature for the detection and quantification of ROS are reviewed as a first step in the assessment and detailed description of the mechanisms involved in the oxidation reactions, focusing on the critical analysis of the main strengths and weaknesses presented by the probe molecules employed in the evaluated studies.This research was supported by the Ministry of Economy and Competitiveness (MINECO/SPAIN) and European Regional Development Fund (ERDF) under the project CTQ2011-25262

    Human Neural Stem Cells Over-Expressing VEGF Provide Neuroprotection, Angiogenesis and Functional Recovery in Mouse Stroke Model

    Get PDF
    BACKGROUND: Intracerebral hemorrhage (ICH) is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs) selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF) results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2–3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke

    Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro

    Get PDF
    Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process

    The use of nano/micro-layers, self-healing and slow release coatings to prevent corrosion and biofouling

    Get PDF
    The mitigation of corrosion and biofouling is a challenge. Through application of chemicals and special techniques can slow these undesired processes, an effective resolution requires a multidisciplinary approach involving scientists, engineers, and metallurgists. In order to understand the importance of the use of nano- and microlayers as well as self-healing coatings, the basic concepts of corrosion, corrosion mechanisms, corrosion inhibition and the microbiologically influenced corrosion will be summarised. The preparation, characterization and application of Langmuir-Blodgett and self assembled nanolayers in corrosive and microbial environment will be discussed. Preparation and characterization of microcapsules/ microspheres and their application in coatings will be demonstrated by a number of examples
    • …
    corecore