10 research outputs found

    Infection‐driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells

    Get PDF
    DATA AVAILABILITYThe mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD017117.International audienceTransglutaminase 2 (TG2) is a ubiquitously expressed enzyme with transamidating activity. We report here that both expression and activity of TG2 are enhanced in mammalian epithelial cells infected with the obligate intracellular bacteria Chlamydia trachomatis. Genetic or pharmacological inhibition of TG2 impairs bacterial development. We show that TG2 increases glucose import by up-regulating the transcription of the glucose transporter genes GLUT-1 and GLUT-3. Furthermore, TG2 activation drives one specific glucose-dependent pathway in the host, i.e., hexosamine biosynthesis. Mechanistically, we identify the glucosamine:fructose-6-phosphate amidotransferase (GFPT) among the substrates of TG2. GFPT modification by TG2 increases its enzymatic activity, resulting in higher levels of UDP-N-acetylglucosamine biosynthesis and protein O-GlcNAcylation. The correlation between TG2 transamidating activity and O-GlcNAcylation is disrupted in infected cells because host hexosamine biosynthesis is being exploited by the bacteria, in particular to assist their division. In conclusion, our work establishes TG2 as a key player in controlling glucose-derived metabolic pathways in mammalian cells, themselves hijacked by C. trachomatis to sustain their own metabolic needs

    CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder

    Get PDF
    Rubinstein-Taybi syndrome (RSTS) is a neurodevelopmental disorder with unclear underlying mechanisms. Here, the authors unravel the contribution of a stress-responsive pathway to RSTS where impaired HSF2 acetylation, due to RSTS-associated CBP/EP300 mutations, alters the expression of neurodevelopmental players, in keeping with hallmarks of cell-cell adhesion defects.Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.</p

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Etude de la perturbation prĂ©coce des marques Ă©pigĂ©nĂ©tiques dans le cerveau fƓtal exposĂ© Ă  l’alcool et de l’implication des voies de rĂ©ponse au stress

    No full text
    Fetal brain is vulnerable to environmental stress such as prenatal alcohol exposure (PAE), the leading non-genetic cause of mental retardation. This stress induces a wide spectrum of neurodevelopmental defects that are often lately diagnosed. A better understanding of molecular mechanisms underlying these defects would help to develop reliable diagnostic tools for the early care of high-risk subjects.HSF2 transcription factor is a major actor of PAE response in the developing brain. Necessary for cortical physiological development, it also leads, in the context of chronic PAE stress, to abnormalities in brain development by changing its genomic targets. In addition, V. Mezger's team has demonstrated, in the embryonic cortex, that HSF2 binds DNMT3A - in a physiological context or following a PAE, DNMT3A being responsible for de novo DNA methylation.Since it has been shown that the methylome profile of adults that were exposed to a PAE stress, is often perturbed, it was conceivable that the DNMT3A/HSF2 interaction, in a stressful context, may, in part, be responsible for this methylome profile modifications. To test this hypothesis, three integrative high-throughput sequencing (NGS) studies were conducted, using cerebral cortices of mouse embryos exposed, or not, to PAE corresponding to a binge drinking alcoholization.ChIP-seq experiments, targeting HSF2 in alcohol-exposed fetal cortices, allowed us to map its binding sites in the genome, and identify 280 HSF2 targets. Most of these target sites are associated with genes involved in brain development or in stress response. Some of these genes are also linked, in the literature, with PAE effects.Few hours after PAE, 432 differentially methylated regions (DMRs) were identified between control (PBS treated) or alcohol-treated fetal cortices, using a methylome capture protocol. This analysis required the development of specific bioinformatics tools and approaches. These DMRs are mainly localized in active enhancers of the adult cortex. A high proportion of their associated genes correspond to imprinted genes or genes encoding clustered Protocadherins, both involved in neurodevelopment or brain function, and known to be impacted in adults prenatally exposed to an alcoholic stress. Because their deposition is linked to PAE per se and show some persistence in the postnatal/adut period, this strongly reinforces their potential as biomarkers of exposition. These results indicate that epigenetic ‘scars‘ are deposited very quickly after PAE and suggest, based on the literature, that some of them persist in adults.To estimate the functional consequences of PAE on the developing brain, a study of chromatin accessibility and gene expression over the stress period was conducted in a physiological context, analyzing public data (ENCODE) of ATAC-seq and RNA-seq from unstressed murine prefrontal cortices. This data mining study allowed us counting and identifying the chromatin regions that are differentially opened or closed, as well as the genes that are activated or repressed between the embryonic stages E13 and E16 in the developing cortex. Of note, a proportion of DMRs are significantly associated with chromatin regions whose accessibility varies - under physiological conditions - during the stress period, but also with genes whose expression increases during development, suggesting a particular vulnerability at these dynamic regions of the genome to stress.Our integrative analysis of the different NGS datasets did not reveal any correlation between HSF2 binding sites and the DMRs. However, since HSF2 target sequences contain often binding sites of methylome readers or chromatin remodellers, HSF2 might be involved in functional consequences of PAE-induced methylome disturbances, rather than in the establishment of these defects.Le cerveau fƓtal est vulnĂ©rable aux stress environnementaux comme l’exposition prĂ©natale Ă  l’alcool (EPA), premiĂšre cause non gĂ©nĂ©tique de retard mental. Ce stress induit un large spectre de dĂ©fauts neurodĂ©veloppementaux souvent diagnostiquĂ©s tardivement. Mieux comprendre les mĂ©canismes molĂ©culaires Ă  l’origine de ces dĂ©fauts permettrait d’élaborer des outils diagnostics fiables, pour une prise en charge prĂ©coce des sujets Ă  risques.Le facteur de transcription HSF2 est un acteur majeur de la rĂ©ponse Ă  l’EPA dans le cerveau en dĂ©veloppement. Bien que nĂ©cessaire au dĂ©veloppement physiologique du cortex, il conduit, en contexte de stress, Ă  des anomalies du dĂ©veloppement cĂ©rĂ©bral, en changeant de cibles gĂ©nomiques. De plus, dans le cortex embryonnaire, dans un contexte physiologique ou suite Ă  une EPA, HSF2 lie DNMT3A, protĂ©ine responsable de la mĂ©thylation de novo de l’ADN.Comme, il a Ă©tĂ© montrĂ© que des adultes ayant subi une EPA prĂ©sentent une perturbation de leur mĂ©thylome, il Ă©tait concevable que l’interaction DNMT3A/HSF2 dans un contexte de stress, puisse, en partie, ĂȘtre Ă  l’origine de cette modification du mĂ©thylome. Pour tester cette hypothĂšse, une alcoolisation de type binge drinking dans des cortex embryonnaires murins a Ă©tĂ© rĂ©alisĂ©e et trois Ă©tudes de sĂ©quençage Ă  haut dĂ©bit (NGS) ont Ă©tĂ© menĂ©es en parallĂšle, puis intĂ©grĂ©es.Un ChIP-seq ciblant HSF2 dans le cortex cĂ©rĂ©bral fƓtal murin a permis de cartographier les sites de fixation de ce facteur et d’identifier 280 cibles de HSF2 aprĂšs cette EPA. La plupart de ces cibles sont des gĂšnes impliquĂ©s dans le dĂ©veloppement cĂ©rĂ©bral, dans la rĂ©ponse au stress et/ou associĂ©es dans la littĂ©rature Ă  des effets d’une EPA.L’identification de 432 rĂ©gions diffĂ©rentiellement mĂ©thylĂ©es (DMRs), immĂ©diatement aprĂšs EPA entre des cortex fƓtaux tĂ©moins (traitĂ©s au PBS) ou traitĂ©s Ă  l'alcool a Ă©tĂ© possible, par une capture du mĂ©thylome. Cette analyse a nĂ©cessitĂ© la mise au point d’un outil et d’une approche bio-informatiques spĂ©cifiques. Ces DMRs se situent majoritairement au niveau d’enhancers actifs du cortex adulte. Une forte proportion des gĂšnes affectĂ©s correspond Ă  des gĂšnes soumis Ă  l’empreinte ou des gĂšnes codant des protocadhĂ©rines (impliquĂ©es dans le neurodĂ©veloppement ou des fonctions cĂ©rĂ©brales), connus comme Ă©tant perturbĂ©s chez l’adulte Ă  la suite d’une EPA. Ces gĂšnes sont donc porteurs de marques Ă©pigĂ©nĂ©tiques anormales, dĂ©posĂ©es dĂšs la fin de l’EPA, et constituent de potentiels biomarqueurs d’exposition. Ainsi, des cicatrices Ă©pigĂ©nĂ©tiques sont mises en place rapidement aprĂšs l’EPA et suggĂšrent, Ă  la lumiĂšre de la littĂ©rature, que certaines persistent chez l’adulte.Pour estimer les consĂ©quences fonctionnelles de l’EPA sur le cerveau en dĂ©veloppement, une Ă©tude de l’accessibilitĂ© de la chromatine et de l’expression des gĂšnes sur la pĂ©riode encadrant le stress a Ă©tĂ© rĂ©alisĂ©e en contexte physiologique, en analysant des donnĂ©es publiques (ENCODE) d’ATAC-seq et de RNA-seq provenant de cortex prĂ©frontaux murins non stressĂ©s. Ce data mining, a permis de dĂ©nombrer et d’identifier les rĂ©gions chromatiniennes diffĂ©rentiellement ouvertes ou fermĂ©es, ainsi que les gĂšnes activĂ©s ou rĂ©primĂ©s entre les stades embryonnaires E13 et E16 dans le cortex en dĂ©veloppement. Les DMR sont associĂ©es Ă  des rĂ©gions chromatiniennes dont l’accessibilitĂ© varie au moment du stress, mais aussi au niveau de gĂšnes dont l’expression augmente au cours du dĂ©veloppement, suggĂ©rant une sensibilitĂ© particuliĂšre de ces rĂ©gions dynamiques du gĂ©nome.L’analyse intĂ©grĂ©e des diffĂ©rents jeux de donnĂ©es NGS, n’a pas permis de mettre en Ă©vidence une corrĂ©lation entre les sites fixĂ©s par HSF2 et les DMR. En revanche, les sites de fixation de HSF2 Ă©tant souvent associĂ©s Ă  des sites de liaison de readers du mĂ©thylome ou des remodellers de la chromatine, il est possible que HSF2 soit impliquĂ© dans les consĂ©quences fonctionnelles des perturbations du mĂ©thylome dues Ă  l’EPA, plutĂŽt que dans la mise en place de ces dĂ©fauts

    Analysis of early epigenetic mark disruptions caused by prenatal alcohol exposure in the mouse developing brain, and involvement of stress-response pathways

    No full text
    Le cerveau fƓtal est vulnĂ©rable aux stress environnementaux comme l’exposition prĂ©natale Ă  l’alcool (EPA), premiĂšre cause non gĂ©nĂ©tique de retard mental. Ce stress induit un large spectre de dĂ©fauts neurodĂ©veloppementaux souvent diagnostiquĂ©s tardivement. Mieux comprendre les mĂ©canismes molĂ©culaires Ă  l’origine de ces dĂ©fauts permettrait d’élaborer des outils diagnostics fiables, pour une prise en charge prĂ©coce des sujets Ă  risques.Le facteur de transcription HSF2 est un acteur majeur de la rĂ©ponse Ă  l’EPA dans le cerveau en dĂ©veloppement. Bien que nĂ©cessaire au dĂ©veloppement physiologique du cortex, il conduit, en contexte de stress, Ă  des anomalies du dĂ©veloppement cĂ©rĂ©bral, en changeant de cibles gĂ©nomiques. De plus, dans le cortex embryonnaire, dans un contexte physiologique ou suite Ă  une EPA, HSF2 lie DNMT3A, protĂ©ine responsable de la mĂ©thylation de novo de l’ADN.Comme, il a Ă©tĂ© montrĂ© que des adultes ayant subi une EPA prĂ©sentent une perturbation de leur mĂ©thylome, il Ă©tait concevable que l’interaction DNMT3A/HSF2 dans un contexte de stress, puisse, en partie, ĂȘtre Ă  l’origine de cette modification du mĂ©thylome. Pour tester cette hypothĂšse, une alcoolisation de type binge drinking dans des cortex embryonnaires murins a Ă©tĂ© rĂ©alisĂ©e et trois Ă©tudes de sĂ©quençage Ă  haut dĂ©bit (NGS) ont Ă©tĂ© menĂ©es en parallĂšle, puis intĂ©grĂ©es.Un ChIP-seq ciblant HSF2 dans le cortex cĂ©rĂ©bral fƓtal murin a permis de cartographier les sites de fixation de ce facteur et d’identifier 280 cibles de HSF2 aprĂšs cette EPA. La plupart de ces cibles sont des gĂšnes impliquĂ©s dans le dĂ©veloppement cĂ©rĂ©bral, dans la rĂ©ponse au stress et/ou associĂ©es dans la littĂ©rature Ă  des effets d’une EPA.L’identification de 432 rĂ©gions diffĂ©rentiellement mĂ©thylĂ©es (DMRs), immĂ©diatement aprĂšs EPA entre des cortex fƓtaux tĂ©moins (traitĂ©s au PBS) ou traitĂ©s Ă  l'alcool a Ă©tĂ© possible, par une capture du mĂ©thylome. Cette analyse a nĂ©cessitĂ© la mise au point d’un outil et d’une approche bio-informatiques spĂ©cifiques. Ces DMRs se situent majoritairement au niveau d’enhancers actifs du cortex adulte. Une forte proportion des gĂšnes affectĂ©s correspond Ă  des gĂšnes soumis Ă  l’empreinte ou des gĂšnes codant des protocadhĂ©rines (impliquĂ©es dans le neurodĂ©veloppement ou des fonctions cĂ©rĂ©brales), connus comme Ă©tant perturbĂ©s chez l’adulte Ă  la suite d’une EPA. Ces gĂšnes sont donc porteurs de marques Ă©pigĂ©nĂ©tiques anormales, dĂ©posĂ©es dĂšs la fin de l’EPA, et constituent de potentiels biomarqueurs d’exposition. Ainsi, des cicatrices Ă©pigĂ©nĂ©tiques sont mises en place rapidement aprĂšs l’EPA et suggĂšrent, Ă  la lumiĂšre de la littĂ©rature, que certaines persistent chez l’adulte.Pour estimer les consĂ©quences fonctionnelles de l’EPA sur le cerveau en dĂ©veloppement, une Ă©tude de l’accessibilitĂ© de la chromatine et de l’expression des gĂšnes sur la pĂ©riode encadrant le stress a Ă©tĂ© rĂ©alisĂ©e en contexte physiologique, en analysant des donnĂ©es publiques (ENCODE) d’ATAC-seq et de RNA-seq provenant de cortex prĂ©frontaux murins non stressĂ©s. Ce data mining, a permis de dĂ©nombrer et d’identifier les rĂ©gions chromatiniennes diffĂ©rentiellement ouvertes ou fermĂ©es, ainsi que les gĂšnes activĂ©s ou rĂ©primĂ©s entre les stades embryonnaires E13 et E16 dans le cortex en dĂ©veloppement. Les DMR sont associĂ©es Ă  des rĂ©gions chromatiniennes dont l’accessibilitĂ© varie au moment du stress, mais aussi au niveau de gĂšnes dont l’expression augmente au cours du dĂ©veloppement, suggĂ©rant une sensibilitĂ© particuliĂšre de ces rĂ©gions dynamiques du gĂ©nome.L’analyse intĂ©grĂ©e des diffĂ©rents jeux de donnĂ©es NGS, n’a pas permis de mettre en Ă©vidence une corrĂ©lation entre les sites fixĂ©s par HSF2 et les DMR. En revanche, les sites de fixation de HSF2 Ă©tant souvent associĂ©s Ă  des sites de liaison de readers du mĂ©thylome ou des remodellers de la chromatine, il est possible que HSF2 soit impliquĂ© dans les consĂ©quences fonctionnelles des perturbations du mĂ©thylome dues Ă  l’EPA, plutĂŽt que dans la mise en place de ces dĂ©fauts.Fetal brain is vulnerable to environmental stress such as prenatal alcohol exposure (PAE), the leading non-genetic cause of mental retardation. This stress induces a wide spectrum of neurodevelopmental defects that are often lately diagnosed. A better understanding of molecular mechanisms underlying these defects would help to develop reliable diagnostic tools for the early care of high-risk subjects.HSF2 transcription factor is a major actor of PAE response in the developing brain. Necessary for cortical physiological development, it also leads, in the context of chronic PAE stress, to abnormalities in brain development by changing its genomic targets. In addition, V. Mezger's team has demonstrated, in the embryonic cortex, that HSF2 binds DNMT3A - in a physiological context or following a PAE, DNMT3A being responsible for de novo DNA methylation.Since it has been shown that the methylome profile of adults that were exposed to a PAE stress, is often perturbed, it was conceivable that the DNMT3A/HSF2 interaction, in a stressful context, may, in part, be responsible for this methylome profile modifications. To test this hypothesis, three integrative high-throughput sequencing (NGS) studies were conducted, using cerebral cortices of mouse embryos exposed, or not, to PAE corresponding to a binge drinking alcoholization.ChIP-seq experiments, targeting HSF2 in alcohol-exposed fetal cortices, allowed us to map its binding sites in the genome, and identify 280 HSF2 targets. Most of these target sites are associated with genes involved in brain development or in stress response. Some of these genes are also linked, in the literature, with PAE effects.Few hours after PAE, 432 differentially methylated regions (DMRs) were identified between control (PBS treated) or alcohol-treated fetal cortices, using a methylome capture protocol. This analysis required the development of specific bioinformatics tools and approaches. These DMRs are mainly localized in active enhancers of the adult cortex. A high proportion of their associated genes correspond to imprinted genes or genes encoding clustered Protocadherins, both involved in neurodevelopment or brain function, and known to be impacted in adults prenatally exposed to an alcoholic stress. Because their deposition is linked to PAE per se and show some persistence in the postnatal/adut period, this strongly reinforces their potential as biomarkers of exposition. These results indicate that epigenetic ‘scars‘ are deposited very quickly after PAE and suggest, based on the literature, that some of them persist in adults.To estimate the functional consequences of PAE on the developing brain, a study of chromatin accessibility and gene expression over the stress period was conducted in a physiological context, analyzing public data (ENCODE) of ATAC-seq and RNA-seq from unstressed murine prefrontal cortices. This data mining study allowed us counting and identifying the chromatin regions that are differentially opened or closed, as well as the genes that are activated or repressed between the embryonic stages E13 and E16 in the developing cortex. Of note, a proportion of DMRs are significantly associated with chromatin regions whose accessibility varies - under physiological conditions - during the stress period, but also with genes whose expression increases during development, suggesting a particular vulnerability at these dynamic regions of the genome to stress.Our integrative analysis of the different NGS datasets did not reveal any correlation between HSF2 binding sites and the DMRs. However, since HSF2 target sequences contain often binding sites of methylome readers or chromatin remodellers, HSF2 might be involved in functional consequences of PAE-induced methylome disturbances, rather than in the establishment of these defects

    Immediate perturbation of DNA methylation upon acute prenatal alcohol exposure in the mouse developing brain cortex

    No full text
    Funding information VM was funded by the Agence Nationale de la Recherche « HSF-EPISAME », SAMENTA ANR-13-SAMA-0008-01) and CNRS. AD was supported by a Doctoral Fellowship from the French MinistÚre de l'Enseignement Supérieur, de la Recherche et de l'Innovation (MESRI) and FM from a Doctoral Fellowship from the CNRS. This study contributes to the Université de Paris IdEx #ANR-18-IDEX-0001 funded by the French Government through its "Investments for the Future" program. DSD benefited from a CNRS Délégation de Recherche (2018-2020). OTT benefited from travel grants from Université Paris Diderot

    CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder

    No full text
    International audienceAbstract Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology
    corecore