148 research outputs found

    Constraining the parameters of binary systems through time-dependent light deflection

    Full text link
    A theory is derived relating the configuration of the cores of active galaxies, specifically candidates for presumed super-massive black hole binaries (SMBHBs), to time-dependent changes in images of those galaxies. Three deflection quantities, resulting from the monopole term, mass quadrupole term, and spin dipole term of the core, are examined. The resulting observational technique is applied to the galaxy 3C66B. This technique is found to under idealized circumstances surpass the technique proposed by Jenet et al. in accuracy for constraining the mass of SMBHB candidates, but is exceeded in accuracy and precision by Jenet's technique under currently-understood likely conditions. The technique can also under favorable circumstances produce results measurable by currently-available astronomical interferometry such as very-long baseline-interferometry (VLBI).Comment: 15 pages, 2 figures, accepted in General Relativity & Gravitatio

    Anomalous Commutator Algebra for Conformal Quantum Mechanics

    Full text link
    The structure of the commutator algebra for conformal quantum mechanics is considered. Specifically, it is shown that the emergence of a dimensional scale by renormalization implies the existence of an anomaly or quantum-mechanical symmetry breaking, which is explicitly displayed at the level of the generators of the SO(2,1) conformal group. Correspondingly, the associated breakdown of the conservation of the dilation and special conformal charges is derived.Comment: 23 pages. A few typos corrected in the final version (which agrees with the published Phys. Rev. D article

    Odd-intrinsic-parity processes within the Resonance Effective Theory of QCD

    Get PDF
    We analyse the most general odd-intrinsic-parity effective Lagrangian of QCD valid for processes involving one pseudoscalar with vector mesons described in terms of antisymmetric tensor fields. Substantial information on the odd-intrinsic-parity couplings is obtained by constructing the vector-vector-pseudoscalar Green's three-point function, at leading order in 1/Nc, and demanding that its short-distance behaviour matches the corresponding OPE result. The QCD constraints thus enforced allow us to predict the decay amplitude omega -> pion gamma, and the O(p^6) corrections to pion -> gamma gamma. Noteworthy consequences concerning the vector meson dominance assumption in the decay omega -> 3 pions are also extracted from the previous analysis.Comment: 20 pages, 4 figure

    Chiral Magnetic Effect in Hydrodynamic Approximation

    Full text link
    We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of "chiral superconductivity". More precise description is a ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is exact chiral limit while the temperature--excitingly enough- does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.Comment: 35 pages, prepared for a volume of the Springer Lecture Notes in Physics "Strongly interacting matter in magnetic fields" edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Matching functions for heavy particles

    Get PDF
    We introduce matching functions as a means of summing heavy-quark logarithms to any order. Our analysis is based on Witten's approach, where heavy quarks are decoupled one at a time in a mass-independent renormalization scheme. The outcome is a generalization of the matching conditions of Bernreuther and Wetzel: we show how to derive closed formulas for summed logarithms to any order, and present explicit expressions for leading order and next-to-leading order contributions. The decoupling of heavy quarks in theories lacking asymptotic freedom is also considered.Comment: Revised version to be published in Physical Review D; added section with application to decoupling of heavy particles in non-asymptotically free theorie

    The Strong CP Problem and Axions

    Get PDF
    I describe how the QCD vacuum structure, necessary to resolve the U(1)AU(1)_A problem, predicts the presence of a P, T and CP violating term proportional to the vacuum angle θˉ\bar{\theta}. To agree with experimental bounds, however, this parameter must be very small (θˉ109(\bar{\theta} \leq 10^{-9}). After briefly discussing some possible other solutions to this, so-called, strong CP problem, I concentrate on the chiral solution proposed by Peccei and Quinn which has associated with it a light pseudoscalar particle, the axion. I discuss in detail the properties and dynamics of axions, focusing particularly on invisible axion models where axions are very light, very weakly coupled and very long-lived. Astrophysical and cosmological bounds on invisible axions are also briefly touched upon.Comment: 14 pages, to appear in the Lecture Notes in Physics volume on Axions, (Springer Verlag

    Differential geometry construction of anomalies and topological invariants in various dimensions

    Full text link
    In the model of extended non-Abelian tensor gauge fields we have found new metric-independent densities: the exact (2n+3)-forms and their secondary characteristics, the (2n+2)-forms as well as the exact 6n-forms and the corresponding secondary (6n-1)-forms. These forms are the analogs of the Pontryagin densities: the exact 2n-forms and Chern-Simons secondary characteristics, the (2n-1)-forms. The (2n+3)- and 6n-forms are gauge invariant densities, while the (2n+2)- and (6n-1)-forms transform non-trivially under gauge transformations, that we compare with the corresponding transformations of the Chern-Simons secondary characteristics. This construction allows to identify new potential gauge anomalies in various dimensions.Comment: 27 pages, references added, matches published versio

    Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions

    Get PDF
    Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions. In the strong electromagnetic fields, c c-bar and b b-bar are produced by photonuclear and two-photon interactions; hadroproduction can occur in grazing interactions. We present the total cross sections, quark transverse momentum and rapidity distributions, as well as the Q Q-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including 17 figure

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284
    corecore