148 research outputs found
Constraining the parameters of binary systems through time-dependent light deflection
A theory is derived relating the configuration of the cores of active
galaxies, specifically candidates for presumed super-massive black hole
binaries (SMBHBs), to time-dependent changes in images of those galaxies. Three
deflection quantities, resulting from the monopole term, mass quadrupole term,
and spin dipole term of the core, are examined. The resulting observational
technique is applied to the galaxy 3C66B. This technique is found to under
idealized circumstances surpass the technique proposed by Jenet et al. in
accuracy for constraining the mass of SMBHB candidates, but is exceeded in
accuracy and precision by Jenet's technique under currently-understood likely
conditions. The technique can also under favorable circumstances produce
results measurable by currently-available astronomical interferometry such as
very-long baseline-interferometry (VLBI).Comment: 15 pages, 2 figures, accepted in General Relativity & Gravitatio
Anomalous Commutator Algebra for Conformal Quantum Mechanics
The structure of the commutator algebra for conformal quantum mechanics is
considered. Specifically, it is shown that the emergence of a dimensional scale
by renormalization implies the existence of an anomaly or quantum-mechanical
symmetry breaking, which is explicitly displayed at the level of the generators
of the SO(2,1) conformal group. Correspondingly, the associated breakdown of
the conservation of the dilation and special conformal charges is derived.Comment: 23 pages. A few typos corrected in the final version (which agrees
with the published Phys. Rev. D article
Odd-intrinsic-parity processes within the Resonance Effective Theory of QCD
We analyse the most general odd-intrinsic-parity effective Lagrangian of QCD
valid for processes involving one pseudoscalar with vector mesons described in
terms of antisymmetric tensor fields. Substantial information on the
odd-intrinsic-parity couplings is obtained by constructing the
vector-vector-pseudoscalar Green's three-point function, at leading order in
1/Nc, and demanding that its short-distance behaviour matches the corresponding
OPE result. The QCD constraints thus enforced allow us to predict the decay
amplitude omega -> pion gamma, and the O(p^6) corrections to pion -> gamma
gamma. Noteworthy consequences concerning the vector meson dominance assumption
in the decay omega -> 3 pions are also extracted from the previous analysis.Comment: 20 pages, 4 figure
Chiral Magnetic Effect in Hydrodynamic Approximation
We review derivations of the chiral magnetic effect (ChME) in hydrodynamic
approximation. The reader is assumed to be familiar with the basics of the
effect. The main challenge now is to account for the strong interactions
between the constituents of the fluid. The main result is that the ChME is not
renormalized: in the hydrodynamic approximation it remains the same as for
non-interacting chiral fermions moving in an external magnetic field. The key
ingredients in the proof are general laws of thermodynamics and the
Adler-Bardeen theorem for the chiral anomaly in external electromagnetic
fields. The chiral magnetic effect in hydrodynamics represents a macroscopic
manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue
that the current induced by the magnetic field is dissipation free and talk
about a kind of "chiral superconductivity". More precise description is a
ballistic transport along magnetic field taking place in equilibrium and in
absence of a driving force. The basic limitation is exact chiral limit while
the temperature--excitingly enough- does not seemingly matter. What is still
lacking, is a detailed quantum microscopic picture for the ChME in
hydrodynamics. Probably, the chiral currents propagate through
lower-dimensional defects, like vortices in superfluid. In case of superfluid,
the prediction for the chiral magnetic effect remains unmodified although the
emerging dynamical picture differs from the standard one.Comment: 35 pages, prepared for a volume of the Springer Lecture Notes in
Physics "Strongly interacting matter in magnetic fields" edited by D.
Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
Matching functions for heavy particles
We introduce matching functions as a means of summing heavy-quark logarithms
to any order. Our analysis is based on Witten's approach, where heavy quarks
are decoupled one at a time in a mass-independent renormalization scheme. The
outcome is a generalization of the matching conditions of Bernreuther and
Wetzel: we show how to derive closed formulas for summed logarithms to any
order, and present explicit expressions for leading order and next-to-leading
order contributions. The decoupling of heavy quarks in theories lacking
asymptotic freedom is also considered.Comment: Revised version to be published in Physical Review D; added section
with application to decoupling of heavy particles in non-asymptotically free
theorie
The Strong CP Problem and Axions
I describe how the QCD vacuum structure, necessary to resolve the
problem, predicts the presence of a P, T and CP violating term proportional to
the vacuum angle . To agree with experimental bounds, however,
this parameter must be very small ). After briefly
discussing some possible other solutions to this, so-called, strong CP problem,
I concentrate on the chiral solution proposed by Peccei and Quinn which has
associated with it a light pseudoscalar particle, the axion. I discuss in
detail the properties and dynamics of axions, focusing particularly on
invisible axion models where axions are very light, very weakly coupled and
very long-lived. Astrophysical and cosmological bounds on invisible axions are
also briefly touched upon.Comment: 14 pages, to appear in the Lecture Notes in Physics volume on Axions,
(Springer Verlag
Differential geometry construction of anomalies and topological invariants in various dimensions
In the model of extended non-Abelian tensor gauge fields we have found new
metric-independent densities: the exact (2n+3)-forms and their secondary
characteristics, the (2n+2)-forms as well as the exact 6n-forms and the
corresponding secondary (6n-1)-forms. These forms are the analogs of the
Pontryagin densities: the exact 2n-forms and Chern-Simons secondary
characteristics, the (2n-1)-forms. The (2n+3)- and 6n-forms are gauge invariant
densities, while the (2n+2)- and (6n-1)-forms transform non-trivially under
gauge transformations, that we compare with the corresponding transformations
of the Chern-Simons secondary characteristics. This construction allows to
identify new potential gauge anomalies in various dimensions.Comment: 27 pages, references added, matches published versio
Heavy Quark Photoproduction in Ultra-peripheral Heavy Ion Collisions
Heavy quarks are copiously produced in ultra-peripheral heavy ion collisions.
In the strong electromagnetic fields, c c-bar and b b-bar are produced by
photonuclear and two-photon interactions; hadroproduction can occur in grazing
interactions. We present the total cross sections, quark transverse momentum
and rapidity distributions, as well as the Q Q-bar invariant mass spectra from
the three production channels. We consider AA and pA collisions at the
Relativistic Heavy Ion Collider and Large Hadron Collider. We discuss
techniques for separating the three processes and describe how the AA to pA
production ratios might be measured accurately enough to study nuclear
shadowing.Comment: Minor changes to satisfy referees and typo fixes; 52 pages including
17 figure
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
- …