6 research outputs found
Multistep Measurement of Plantar Pressure Alterations Using Metatarsal Pads
Metatarsal pads are frequently prescribed for nonoperative management of metatarsalgia due to various etiologies. When appropriately placed, they are effective in reducing pressures under the metatarsal heads on the plantar surface of the foot. Despite the positive clinical reports that have been cited, there are no quantitative studies documenting the load redistribution effects of these pads during multiple step usage within the shoe environment. The objective of this study was to assess changes in plantar pressure metrics resulting from pad use. Ten normal adult male subjects were tested during a series of 400-step trials. Pressures were recorded from eight discrete plantar locations at the hindfoot, midfoot, and forefoot regions of the insole. Significant increases in peak pressures, contact durations, and pressure-time integrals were noted at the metatarsal shaft region with pad use (P ≤ .05). Statistically significant changes in metric values were not seen at the other plantar locations, although metatarsal pad use resulted in mild decreases in mean peak pressures at the first and second metatarsal heads and slight increases laterally. Contact durations decreased at all metatarsal head locations, while pressure-time integrals decreased at the first, second, third, and fourth metatarsal heads. A slight increase in pressure-time integrals was seen at the fifth metatarsal head. The redistribution of plantar pressures tended to relate not only to the dimensions of the metatarsal pads, but also to foot size, anatomic foot configuration, and pad location. Knowledge of these parameters, along with careful control of pad dimensions and placement, allows use of the metatarsal pad as an effective orthotic device for redistributing forefoot plantar pressures
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
Characterization of the Electroencephalogram As a Chaotic Time Series
The correlation dimension has been used to characterize the effect of anesthesia on the EEG [13][14][22], epileptic discharges [1], and mental activity [16]. Although the methods are computationally intensive, the resulting data reduction permits simplification of presentation, and thereby the possibility of more direct identification of EEG pathology and changes in state. In the following study, dimensional analysis is used to characterize the human electroencephalogram and to determine whether it can be presented as a chaotic time series. The novelty in this research lies in the method of presenting the results; they are presented in a topographical mapping across the scalp. Additionally, the validity of using short epochs for dimensional calculations is evaluated. Chapter 1 provides a historical background about chaos and dynamical systems, followed by a description of strange attractors and their sensitive dependence on initial conditions. Chapter 2 introduces the dimension of dynamical systems and discusses different methods for computing the dimension of a time series. Chapter 3 presents a study of low dimensional systems. Two models are analysed: The Henon map, and the Lorenz attractor. Chapter 4 discusses the applications of dimensional analysis to EEG. The chapter starts with an introduction to EEG, its sources, its recording, and its characteristics. Then, the dimensionality of the human EEG is addressed using embedded time series. First, the effect of the lag factor on the embedding of the time series is investigated. Then, spatial and temporal dimensional analyses are performed on the EEG data and the results are presented in a topographical mapping across the scalp. Additionally, the effect of the number of data points analysed on the dimension of the time series and the validity of short data segments are evaluated. The results are given in Appendices D and E. Finally, Chapter 5 summarizes and concludes the results of this study. A listing of the software for implementing the correlation dimension of experimental time series is provided in Appendices A and B
Global Incidence and Risk Factors Associated With Postoperative Urinary Retention Following Elective Inguinal Hernia Repair
Importance Postoperative urinary retention (POUR) is a well-recognized complication of inguinal hernia repair (IHR). A variable incidence of POUR has previously been reported in this context, and contradictory evidence surrounds potential risk factors.Objective To ascertain the incidence of, explore risk factors for, and determine the health service outcomes of POUR following elective IHR.Design, Setting, and Participants The Retention of Urine After Inguinal Hernia Elective Repair (RETAINER I) study, an international, prospective cohort study, recruited participants between March 1 and October 31, 2021. This study was conducted across 209 centers in 32 countries in a consecutive sample of adult patients undergoing elective IHR.Exposure Open or minimally invasive IHR by any surgical technique, under local, neuraxial regional, or general anesthesia.Main Outcomes and Measures The primary outcome was the incidence of POUR following elective IHR. Secondary outcomes were perioperative risk factors, management, clinical consequences, and health service outcomes of POUR. A preoperative International Prostate Symptom Score was measured in male patients.Results In total, 4151 patients (3882 male and 269 female; median [IQR] age, 56 [43-68] years) were studied. Inguinal hernia repair was commenced via an open surgical approach in 82.2% of patients (n = 3414) and minimally invasive surgery in 17.8% (n = 737). The primary form of anesthesia was general in 40.9% of patients (n = 1696), neuraxial regional in 45.8% (n = 1902), and local in 10.7% (n = 446). Postoperative urinary retention occurred in 5.8% of male patients (n = 224), 2.97% of female patients (n = 8), and 9.5% (119 of 1252) of male patients aged 65 years or older. Risk factors for POUR after adjusted analyses included increasing age, anticholinergic medication, history of urinary retention, constipation, out-of-hours surgery, involvement of urinary bladder within the hernia, temporary intraoperative urethral catheterization, and increasing operative duration. Postoperative urinary retention was the primary reason for 27.8% of unplanned day-case surgery admissions (n = 74) and 51.8% of 30-day readmissions (n = 72).Conclusions The findings of this cohort study suggest that 1 in 17 male patients, 1 in 11 male patients aged 65 years or older, and 1 in 34 female patients may develop POUR following IHR. These findings could inform preoperative patient counseling. In addition, awareness of modifiable risk factors may help to identify patients at increased risk of POUR who may benefit from perioperative risk mitigation strategies