35 research outputs found

    Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The yield of charged particles associated with high-pTp_{\rm T} trigger particles (8<pT<158 < p_{\rm T} < 15 GeV/cc) is measured with the ALICE detector in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta pT>3p_{\rm T}> 3 GeV/cc on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/350

    Neutral pion and η\eta meson production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV and s=7\sqrt{s}=7 TeV

    Get PDF
    The first measurements of the invariant differential cross sections of inclusive π0\pi^0 and η\eta meson production at mid-rapidity in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV and s=7\sqrt{s}=7 TeV are reported. The π0\pi^0 measurement covers the ranges 0.4<pT<70.4<p_T<7 GeV/cc and 0.3<pT<250.3<p_T<25 GeV/cc for these two energies, respectively. The production of η\eta mesons was measured at s=7\sqrt{s}=7 TeV in the range 0.4<pT<150.4<p_T<15 GeV/cc. Next-to-Leading Order perturbative QCD calculations, which are consistent with the π0\pi^0 spectrum at s=0.9\sqrt{s}=0.9 TeV, overestimate those of π0\pi^0 and η\eta mesons at s=7\sqrt{s}=7 TeV, but agree with the measured η/π0\eta/\pi^0 ratio at s=7\sqrt{s}=7 TeV.Comment: 17 pages, 5 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/310

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions at root s(NN)=2.76 TeV

    Get PDF
    The first measurement of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section, the pseudorapidity density of primary charged particles at midrapidity is 1584 +/- 4(stat) +/- 76(syst), which corresponds to 8.3 +/- 0.4(syst) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at root s(NN) = 0.2 TeV. This measurement provides the first experimental constraint for models of nucleus-nucleus collisions at LHC energies

    ALICE Electromagnetic Calorimeter Technical Design Report

    Get PDF
    The ALICE Electromagnetic Calorimeter technical design is reported
    corecore