269 research outputs found

    The morphology of the Milky Way - I. Reconstructing CO maps from simulations in fixed potentials

    Get PDF
    PublishedJournal ArticleWe present an investigation into the morphological features of the MilkyWay.We use smoothed particle hydrodynamics (SPH) to simulate the interstellar medium (ISM) in the Milky Way under the effect of a number of different gravitational potentials representing spiral arms and bars, assuming that the Milky Way is a grand design spiral in nature. The gas is subject to ISM cooling and chemistry, enabling us to track the evolution of molecular gas. We use a 3D radiative transfer code to simulate the emission from the SPH output, allowing for the construction of synthetic longitude-velocity (l-v) emission maps as viewed from the Earth. By comparing these maps with the observed emission in CO from the Milky Way, we infer the arm/bar geometry that provides a best fit to our Galaxy. We find that it is possible to reproduce nearly all features of the l-v diagram in CO emission. There is no model, however, that satisfactorily reproduces all of the features simultaneously. Models with two arms cannot reproduce all the observed arm features, while four armed models produce too bright local emission in the inner Galaxy. Our best-fitting models favour a bar pattern speed within 50-60 km s-1 kpc-1 and an arm pattern speed of approximately 20 km s-1 kpc-1, with a bar orientation of approximately 45° and arm pitch angle between 10°-15°.We thank an anonymous referee, whose comments and suggestions improved the paper. We also thank Tom Dame for providing access to the CO longitude–velocity data. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. ARP is supported by an STFC-funded post-graduate studentship. CLD acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. DJP is supported by a Future Fellowship funded by the Australian Research Council (FT130100034). Figures showing SPH particle density were rendered using SPLASH (Price 2007). Datasets used in this paper are available at: http://hdl.handle.net/10871/15057

    The changing GMC population in galaxy interactions

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordWith the advent of modern observational efforts providing extensive giant molecular cloud catalogues, understanding the evolution of such clouds in a galactic context is of prime importance. While numerous previous numerical and theoretical works have focused on the cloud properties in isolated discs, few have looked into the cloud population in an interacting disc system. We present results of the first study investigating the evolution of the cloud population in galaxy experiencing an M51-like tidal fly-by using numerical simulations including star formation, interstellar medium cooling, and stellar feedback. We see the cloud population shift to large unbound clouds in the wake of the companion passage, with the largest clouds appearing as fleeting short-lived agglomerations of smaller clouds within the tidal spiral arms, brought together by large-scale streaming motions. These are then sheared apart as they leave the protection of the spiral arms. Clouds appear to lead diverse lives, even within similar environments, with some being born from gas shocked by filaments streaming into the spiral arms, and others from effectively isolated smaller colliding pairs. Overall, this cloud population produces a shallower mass function than the disc in isolation, especially in the arms compared to the inter-arm regions. Direct comparisons to M51 observations show similarities between cloud populations, though models tailored to the mass and orbital models of M51 appear necessary to precisely reproduce the cloud population

    How do different spiral arm models impact the ISM and GMC population?

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this recordData availability: The data underlying this article will be shared on reasonable request to the corresponding author.The nature of galactic spiral arms in disc galaxies remains elusive. Regardless of the spiral model, arms are expected to play a role in sculpting the star-forming interstellar medium (ISM). As such, different arm models may result in differences in the structure of the ISM and molecular cloud properties. In this study, we present simulations of galactic discs subject to spiral arm perturbations of different natures. We find very little difference in how the cloud population or gas kinematics vary between the different grand design spirals, indicating that the ISM on cloud scales cares little about where spiral arms come from. We do, however, see a difference in the interarm/arm mass spectra, and minor differences in tails of the distributions of cloud properties (as well as radial variations in the stellar/gaseous velocity dispersions). These features can be attributed to differences in the radial dependence of the pattern speeds between the different spiral models, and could act as a metric of the nature of spiral structure in observational studies.Japanese Society for the Promotion of Science (JSPS)European Union Horizon 2020Deutsche Forschungsgemeinschaft (DFG)Royal SocietyHeising-Simons FoundationNational Science Foundatio

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Health and life insurance as an alternative to malpractice tort law

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tort law has legitimate social purposes of deterrence, punishment and compensation, but medical tort law does none of these well. Tort law could be counterproductive in medicine, encouraging costly defensive practices that harm some patients, restricting access to care in some settings and discouraging innovation.</p> <p>Discussion</p> <p>Patients might be better served by purchasing combined health and life insurance policies and waiving their right to pursue malpractice claims. The combined policy should encourage the insurer to profit by inexpensively delaying policyholders' deaths. A health and life insurer would attempt to minimize mortal risks to policyholders from any cause, including medical mistakes and could therefore pursue systematic quality improvement efforts. If policyholders trust the insurer to seek, develop and reward genuinely effective care; identify, deter and remediate poor care; and compensate survivors through the no-fault process of paying life insurance benefits, then tort law is largely redundant and the right to sue may be waived. If expensive defensive medicine can be avoided, that savings alone could pay for fairly large life insurance policies.</p> <p>Summary</p> <p>Insurers are maligned largely because of their logical response to incentives that are misaligned with the interests of patients and physicians in the United States. Patient, provider and insurer incentives could be realigned by combining health and life insurance, allowing the insurer to use its considerable information access and analytic power to improve patient care. This arrangement would address the social goals of malpractice torts, so that policyholders could rationally waive their right to sue.</p

    The impact of land use/land cover scale on modelling urban ecosystem services

    Get PDF
    Context Urbanisation places increasing stress on ecosystem services; however existing methods and data for testing relationships between service delivery and urban landscapes remain imprecise and uncertain. Unknown impacts of scale are among several factors that complicate research. This study models ecosystem services in the urban area comprising the towns of Milton Keynes, Bedford and Luton which together represent a wide range of the urban forms present in the UK. Objectives The objectives of this study were to test (1) the sensitivity of ecosystem service model outputs to the spatial resolution of input data, and (2) whether any resultant scale dependency is constant across different ecosystem services and model approaches (e.g. stock- versus flow-based). Methods Carbon storage, sediment erosion, and pollination were modelled with the InVEST framework using input data representative of common coarse (25 m) and fine (5 m) spatial resolutions. Results Fine scale analysis generated higher estimates of total carbon storage (9.32 vs. 7.17 kg m−2) and much lower potential sediment erosion estimates (6.4 vs. 18.1 Mg km−2 year−1) than analyses conducted at coarser resolutions; however coarse-scale analysis estimated more abundant pollination service provision. Conclusions Scale sensitivities depend on the type of service being modelled; stock estimates (e.g. carbon storage) are most sensitive to aggregation across scales, dynamic flow models (e.g. sediment erosion) are most sensitive to spatial resolution, and ecological process models involving both stocks and dynamics (e.g. pollination) are sensitive to both. Care must be taken to select model data appropriate to the scale of inquiry
    corecore