48 research outputs found

    Climatically-Active Gases in the Eastern Boundary Upwelling and Oxygen Minimum Zone (OMZ) Systems

    Get PDF
    International audienceThe EBUS (Eastern Boundary Upwelling Systems) and OMZs (Oxygen Minimum Zone) contribute very significantly to the gas exchange between the ocean and the atmosphere, notably with respect to the greenhouse gases (hereafter GHG). From in-situ ocean measurements, the uncertainty of the net global ocean-atmosphere CO2 fluxes is between 20 and 30%, and could be much higher in the EBUS-OMZ. Off Peru, very few in-situ data are available presently, which justifies alternative approaches for assessing these fluxes. GHG air-sea fluxes determination can be inferred from inverse modeling applied to Vertical Column Densities (VCDs) from GOSAT, using state of the art modeling, at low spatial resolution. For accurately linking sources of GHGs to EBUS and OMZs, the resolution of the source regions needs to be increased. This task develops on new non-linear and multiscale processing methods for complex signals to infer a higher spatial resolution mapping of the fluxes and the associated sinks and sources between the atmosphere and the ocean. The use of coupled satellite data (e.g. SST and/or Ocean colour) that carry turbulence information associated to ocean dynamics is taken into account at unprecedented detail level to incorporate turbulence effects in the evaluation of the air-sea fluxes. We will present a framework as described above for determining sources and sinks of GHG from satellite remote sensing with the Peru OMZ as a test bed

    The relationship between body size and population abundance in summer dung beetle communities of south-european mountains (Coleoptera: scarabaeoidea)

    Get PDF
    La relation entre la taille corporelle et la densité de population au sein des communautés de bousiers a été étudiée dans trois massifs montagneux sud-européens: les Alpes méridionales (France), les Pyrénées orientales (France) et la Sierra de Gredos (Espagne). Les espèces de taille moyenne dominent dans les Alpes et la Sierra de Gredos, tandis que dans les Pyrénées ce sont les espèces de grande taille (Geotrupinae) qui présentent les plus fortes densités de population. Parallèlement à la domination des espèces de grande taille les communautés des Pyrénées sont caractérisées par une très faible diversité (sous-représentation des Aphodiinae et des Coprinae). Nos résultats montrent que la relation entre la taille corporelle et la densité de population ne présente pas un patron homogène dans les communautés de bousiers du sud de l'Europe. L'étude des peuplements locaux ne peut donc permettre de déduire d'éventuelles tendances évolutives. En outre, dans les Pyrénées, la compétition interspécifique semble avoir joué un rôle important dans la mise en place de la faune. Trois hypothèses sont proposées pour expliquer la spécificité des communautés pyrénéennes.The relationship between body size and population abundance was studied in summer dung beetle communities of three South-European mountains: southern Alps (France) , eastern Pyrenees (France) , Sierra de Gredos (Spain) . Middle-sized species dominated in southern Alps and in the Sierra de Gredos, but the large-bodied species (Geotrupinae) presented the highest population densities in the Pyrenean communities. The domination of large-bodied species in the Pyrenees was linked with a noteworthy low diversity (under-representation of Aphodiinae and Coprinae). Our results showed (i) that the relationship between body size and population density does not present a homogeneous pattern in South-European dung beetle communities. So, the study of local assemblages does not allow to in fer underlying evolutionary trends. ( i i ) Conversely this analysis allows to assume that interspecific competition played a main role in the formation of the Pyrenean fauna. Three hypotheses are proposed to explain the specificity of Pyrenean communities

    Increasing risk of breakthrough COVID-19 in outbreaks with high attack rates in European long-term care facilities, July to October 2021

    Get PDF
    We collected data from 10 EU/EEA countries on 240 COVID-19 outbreaks occurring from July-October 2021 in long-term care facilities with high vaccination coverage. Among 17,268 residents, 3,832 (22.2%) COVID-19 cases were reported. Median attack rate was 18.9% (country range: 2.8-52.4%), 17.4% of cases were hospitalised, 10.2% died. In fully vaccinated residents, adjusted relative risk for COVID-19 increased with outbreak attack rate. Findings highlight the importance of early outbreak detection and rapid containment through effective infection prevention and control measures.S

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
    corecore