270 research outputs found

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page

    Hidden Order in the Cuprates

    Full text link
    We propose that the enigmatic pseudogap phase of cuprate superconductors is characterized by a hidden broken symmetry of d(x^2-y^2)-type. The transition to this state is rounded by disorder, but in the limit that the disorder is made sufficiently small, the pseudogap crossover should reveal itself to be such a transition. The ordered state breaks time-reversal, translational, and rotational symmetries, but it is invariant under the combination of any two. We discuss these ideas in the context of ten specific experimental properties of the cuprates, and make several predictions, including the existence of an as-yet undetected metal-metal transition under the superconducting dome.Comment: 12 pages of RevTeX, 9 eps figure

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Sustainable Supply Chain Management and the transition towards a Circular Economy: Evidence and some Applications

    Get PDF
    In the last decades, green and sustainable supply chain management practices have been developed, trying to integrate environmental concerns into organisations by reducing unintended negative consequences on the environment of production and consumption processes. In parallel to this, the circular economy discourse has been propagated in the industrial ecology literature and practice. Circular economy pushes the frontiers of environmental sustainability by emphasising the idea of transforming products in such a way that there are workable relationships between ecological systems and economic growth. Therefore, circular economy is not just concerned with the reduction of the use of the environment as a sink for residuals but rather with the creation of self-sustaining production systems in which materials are used over and over again. Through two case studies from different process industries (chemical and food), this paper compares the performances of traditional and circular production systems across a range of indicators. Direct, indirect and total lifecycle emissions, waste recovered, virgin resources use, as well as carbon maps (which provide a holistic visibility of the entire supply chain) are presented. The paper asserts that an integration of circular economy principles within sustainable supply chain management can provide clear advantages from an environmental point view. Emerging supply chain management challenges and market dynamics are also highlighted and discussed
    corecore