111 research outputs found

    Accounting for Centennial Scale Variability when Detecting Changes in ENSO: a study of the Pliocene

    Get PDF
    The El Niño Southern Oscillation (ENSO) is the dominant mode of interannual climate variability. However, climate models are inconsistent in future predictions of ENSO, and long term variations in ENSO cannot be quantified from the short instrumental records available. Here we analyse ENSO behaviour in millennial-scale climate simulations of a warm climate of the past, the mid-Pliocene Warm Period (mPWP; ∼3.3 − 3.0Ma). We consider centennial-scale variability in ENSO for both the mPWP and the preindustrial, and consider which changes between the two climates are detectable above this variability. We find that El Niño typically occurred 12% less frequently in the mPWP but with a 20% longer duration, and with stronger amplitude in precipitation and temperature. However low frequency variability in ENSO meant that Pliocene-preindustrial changes in El Niño temperature amplitude in the NINO3.4 region (5° N-5° S, 170° W-120° W) were not always detectable. The Pliocene-preindustrial El Niño temperature signal in the NINO4 region (5° N-5° S, 160° E-150° W) and the El Niño precipitation signal are usually larger than centennial scale variations of El Niño amplitude, and provide consistent indications of ENSO amplitude change. The enhanced mPWP temperature signal in the NINO4 region is associated with an increase in Central Pacific El Niño events similar to those observed in recent decades and predicted for the future. This study highlights the importance of considering centennial scale variability when comparing ENSO changes between two climate states. If centennial scale variability in ENSO has not first been established, results suggesting changes in ENSO behaviour may not be robust

    Ligand-hole localization in oxides with unusual valence Fe

    Get PDF
    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    Temporally variable geographical distance effects contribute to the assembly of root-associated fungal communities

    Get PDF
    Root-associated fungi are key contributors to ecosystem functioning, however, the factors which determine community assembly are still relatively poorly understood. This study simultaneously quantified the roles of geographical distance, environmental heterogeneity and time in determining root-associated fungal community composition at the local scale within a short rotation coppice (SRC) willow plantation. Culture independent molecular analyses of the root-associated fungal community suggested a strong but temporally variable effect of geographical distance among fungal communities in terms of composition at the local geographical level. Whilst these distance effects were most prevalent on October communities, soil pH had an effect on structuring of the communities throughout the sampling period. Given the temporal variation in the effects of geographical distance and the environment for shaping root-associated fungal communities, there is clearly need for a temporal component to sampling strategies in future investigations of fungal ecology

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore