71 research outputs found

    UNBOUND

    Get PDF
    UNBOUND showcases the graduating class from the fashion design school at Fanshawe College. We are pleased to present Unbound 2017! Our 11th Unbound theme embraces the concept of Craft and Machine , a blend of couturier techniques with technology. Unbound describes the creative spirit and achievements of our eighteen emerging Canadian fashion designers. Unbound 2017 is a professional collaboration between Fanshawe College, community and professionals in the fashion industry. As you turn the pages, admire their accomplishments - the results of three years of passion, hard work, and dedication.https://first.fanshawec.ca/famd_design_fashiondesign_unbound/1004/thumbnail.jp

    An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity

    Get PDF
    Kidney tumours are among the most common solid tumours in children, comprising distinct subtypes differing in many aspects, including cell-of-origin, genetics, and pathology. Pre-clinical cell models capturing the disease heterogeneity are currently lacking. Here, we describe the first paediatric cancer organoid biobank. It contains tumour and matching normal kidney organoids from over 50 children with different subtypes of kidney cancer, including Wilms tumours, malignant rhabdoid tumours, renal cell carcinomas, and congenital mesoblastic nephromas. Paediatric kidney tumour organoids retain key properties of native tumours, useful for revealing patient-specific drug sensitivities. Using single cell RNA-sequencing and high resolution 3D imaging, we further demonstrate that organoid cultures derived from Wilms tumours consist of multiple different cell types, including epithelial, stromal and blastemal-like cells. Our organoid biobank captures the heterogeneity of paediatric kidney tumours, providing a representative collection of well-characterised models for basic cancer research, drug-screening and personalised medicine

    METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: an initiative of the Joint Programme for Neurodegenerative Disease Research

    Get PDF
    Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention

    A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition

    Get PDF
    Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer

    ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats

    Get PDF
    An update to the 2007 American College of Veterinary Internal Medicine (ACVIM) consensus statement on the identification, evaluation, and management of systemic hypertension in dogs and cats was presented at the 2017 ACVIM Forum in National Harbor, MD. The updated consensus statement is presented here. The consensus statement aims to provide guidance on appropriate diagnosis and treatment of hypertension in dogs and cats

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link

    Inleiding. Vrijzinnigheid: wat is dat eigenlijk?

    No full text

    Expression of the rice vdac isoform2: histochemical localization and expression level.

    No full text
    The voltage-dependent anion-selective channel (VDAC) is a mitochondrial outer membrane ion channel. The putative promoter of the rice vdac isoform2 (osvdac2) was isolated by screening a rice genomic library. Computer-based analyses predicted a TATA box, a putative transcription start and several transcription factor-binding sites including pollen specific elements. The promoter region was fused to the gus reporter gene and introduced into rice by Agrobacterium-mediated transformation. Histochemical and cell-type localizations indicated an overall expression of this promoter with a strong expression in actively growing lateral roots and in the pollen grains. Quantitative experiments showed that the osvdac2 promoter has a strong specific activity in both root and shoot. Thus, the osvdac2 promoter could be a good alternative to viral promoters (e.g. CaMV 35S) to overexpress genes in transgenic Poaceae.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Regional frontal cortical volumes decrease differentially in aging: An MRI study to compare volumetric approaches and voxelbased morphometry.

    No full text
    Recent neuroimaging studies suggest that the frontal lobes are the part of the brain most profoundly affected by the aging process. The present study investigated whether subregions within the frontal cortex show different patterns of brain aging. Magnetic resonance images of 57 healthy participants between 21 and 81 years old were used to measure regional frontal gray matter volumes in three ways: a manual tracing method, a semiautomatic "Talairach boxes" volumetric method, and voxel-based morphometry. Seven regions within each hemisphere were manually traced: precentral gyrus, inferior frontal gyrus, dorsolateral frontal cortex, ventral medial region, lateral orbital region, anterior cingulate, and frontal pole. With the semiautomatic approach, four regions were measured: lateral, orbital, and medial frontal regions and frontal pole. Advancing age was strongly associated with decreases in the volume of the whole frontal cortex. Differential age effects on the volumes of frontal subregions were dependent on the method applied. According to the manual approach, age-related volume decreases were strongest in the lateral and orbital frontal gray matter. The semiautomatic and voxel-based analyses found that age effects were most prominent within the lateral frontal and cingulate regions. Overall, it was concluded that although semiautomated and voxel-based methods can provide a reasonable estimate of regional brain volume, they cannot serve as a substitute for manual volumetry
    corecore