31 research outputs found

    A decision-making framework for school infrastructure improvement programs

    Get PDF
    School infrastructure affects the quality of education and the performance of children and youth. Natural hazards such as earthquakes, hurricanes, floods, and landslides, threaten critical infrastructure such as school facilities. Additionally, problems related to the functionality of these facilities are common in the region, such as an inadequate number of classrooms, poor lighting, and insufficient ventilation, among others. At a national level, the decision-making process to prioritize schools’ interventions becomes even more challenging due to limited resources and lack of information. Furthermore, there is a lack of a systematic approach to address the need of improving existing infrastructure taking into consideration limited resources. Considering this, a novel decision-making framework is proposed that prioritizes school infrastructure investment with limited budgets, using clustering procedures, a multi-criteria utility function, and an optimization component. This framework allows better public policy decisions and benefits students in terms of buildings quality with a multi-criteria perspective, improving both safety and functional conditions. The framework is illustrated with a case study applied to the public-school infrastructure in the Dominican Republic

    Towards disaster risk mitigation on large-scale school intervention programs

    Get PDF
    Education infrastructure is one of the main barriers on school quality in Low- and Middle-Income Countries (L&MICs), since it is insufficient and unevenly distributed. Improving the school infrastructure is needed to provide a high-quality education environment. Although research on how to improve the infrastructure is available, there is still a lack of a consistent and systematic approach to develop large-scale interventions at the national or regional level. To fill this gap, we propose a data-driven methodology with the purpose of developing a prioritization of interventions to carry out a seismic disaster risk reduction program. The method starts by identifying groups of similar buildings using clustering analysis, starting with a seismic taxonomy as descriptor (i.e., model input). Then, domain experts analyze the suggested clusters to design scalable interventions for the representative building of each cluster. The proposed data-driven methodology requires experts’ criteria in each step to validate the results and make them applicable, but significantly reduces the bias by automating the decision-making process. We use as case study the Dominican Republic public school infrastructure and present the results of the application of the proposed method. The method presented herein is extensible to other infrastructure portfolios, as well as to other types of hazards

    A Project Portfolio Management Approach to Tacklingthe Exploration/Exploitation Trade-off

    Get PDF
    Organizational ambidexterity (OA) is an essen-tial capability for surviving in dynamic business environ-ments that advocates the simultaneous engagement inexploration and exploitation. Over the last decades,knowledge on OA has substantially matured, coveringinsights into antecedents, outcomes, and moderators of OA.However, there is little prescriptive knowledge that offersguidance on how to put OA into practice and to tackle thetrade-off between exploration and exploitation. To addressthis gap, the authors adopt the design science researchparadigm and propose an economic decision model asartifact. The decision model assists organizations inselecting and scheduling exploration and exploitation pro-jects to become ambidextrous in an economically reason-able manner. As for justificatory knowledge, the decisionmodel draws from prescriptive knowledge on projectportfolio management and value-based management, andfrom descriptive knowledge related to OA to structure thefield of action. To evaluate the decision model, its designspecification is discussed against theory-backed designobjectives and with industry experts. The paper alsoinstantiates the decision model as a software prototype andapplies the prototype to a case based on real-world data

    Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research and practice

    Get PDF
    As far back as the industrial revolution, great leaps in technical innovation succeeded in transforming numerous manual tasks and processes that had been in existence for decades where humans had reached the limits of physical capacity. Artificial Intelligence (AI) offers this same transformative potential for the augmentation and potential replacement of human tasks and activities within a wide range of industrial, intellectual and social applications. The pace of change for this new AI technological age is staggering, with new breakthroughs in algorithmic machine learning and autonomous decision making engendering new opportunities for continued innovation. The impact of AI is significant, with industries ranging from: finance, retail, healthcare, manufacturing, supply chain and logistics all set to be disrupted by the onset of AI technologies. The study brings together the collective insight from a number of leading expert contributors to highlight the significant opportunities, challenges and potential research agenda posed by the rapid emergence of AI within a number of domains: technological, business and management, science and technology, government and public sector. The research offers significant and timely insight to AI technology and its impact on the future of industry and society in general
    corecore